期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于不完备标签数据的半监督聚类算法
1
作者
袁利永
《计算机系统应用》
2011年第2期182-185,共4页
针对seeded-K-means和constrained-K-means算法要求标签数据类别完备的限制,本文提出了基于不完备标签数据的半监督K-means聚类算法,重点讨论了未标签类别初始聚类中心的选取问题。首先给出了未标签类别聚类中心最优候选集的定义,然后...
针对seeded-K-means和constrained-K-means算法要求标签数据类别完备的限制,本文提出了基于不完备标签数据的半监督K-means聚类算法,重点讨论了未标签类别初始聚类中心的选取问题。首先给出了未标签类别聚类中心最优候选集的定义,然后提出了一种新的未标签类别初始聚类中心选取方法,即采用K-means算法从最优候选集中选取初始聚类中心,最后给出了基于新方法的半监督聚类算法的完整描述,并通过实验测试对新算法的有效性进行了验证。实验结果表明本文所提算法在执行速度和聚类效果上都优于现有算法。
展开更多
关键词
半监督聚类:K.means
不完备先验知识
初始聚类中心
标签数据
下载PDF
职称材料
题名
基于不完备标签数据的半监督聚类算法
1
作者
袁利永
机构
浙江师范大学数理与信息工程学院
出处
《计算机系统应用》
2011年第2期182-185,共4页
文摘
针对seeded-K-means和constrained-K-means算法要求标签数据类别完备的限制,本文提出了基于不完备标签数据的半监督K-means聚类算法,重点讨论了未标签类别初始聚类中心的选取问题。首先给出了未标签类别聚类中心最优候选集的定义,然后提出了一种新的未标签类别初始聚类中心选取方法,即采用K-means算法从最优候选集中选取初始聚类中心,最后给出了基于新方法的半监督聚类算法的完整描述,并通过实验测试对新算法的有效性进行了验证。实验结果表明本文所提算法在执行速度和聚类效果上都优于现有算法。
关键词
半监督聚类:K.means
不完备先验知识
初始聚类中心
标签数据
Keywords
semi-supervised clustering
K-means
incomplete prior knowledge
initial cluster center
labeled data
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于不完备标签数据的半监督聚类算法
袁利永
《计算机系统应用》
2011
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部