Stochastic bifurcations of the SD (smooth and discontinuous) oscillator with additive and/or multiplicative bounded noises are studied by the generalized cell mapping method using digraph analysis algorithm. From th...Stochastic bifurcations of the SD (smooth and discontinuous) oscillator with additive and/or multiplicative bounded noises are studied by the generalized cell mapping method using digraph analysis algorithm. From the global viewpoint, stochastic bifur- cation can be described as a sudden change in shape and size of a random attractor as the system parameter valies. The evolu- tionary process of stochastic bifurcation in the SD oscillator is shown in detail. Meanwhile, we show the phenomenon that un- der stochastic excitation the shape and size of random attractor and random saddle change along with the direction of unstable manifold. A plane stochastic bifurcation diagram is included.展开更多
An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form...An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form,these invariant manifolds can be approximated arbitrarily closely as Taylor series around Lagrange points.These invariant manifolds are represented by algebraic equations containing the state variables only without the help of time.Thus the so-called geometric structure of these invariant manifolds is obtained.The stable,unstable and center manifolds are tangent to the stable,unstable and center eigenspaces,respectively.As an example of applicability,the invariant manifolds of L 1 point of the Sun-Earth system are considered.The stable and unstable manifolds are symmetric about the line from the Sun to the Earth,and they both reach near the Earth,so that the low energy transfer trajectory can be found based on the stable and unstable manifolds.The periodic or quasi-periodic orbits,which are chosen as nominal arrival orbits,can be obtained based on the center manifold.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.10932009 and 11172233)the Natural Science Foundation of Shaanxi Province (Grant No.2012JQ1004)the Northwestern Polytechnical University Foundation for Fundamental Research (Grant Nos.JC201266 and JC20110228)
文摘Stochastic bifurcations of the SD (smooth and discontinuous) oscillator with additive and/or multiplicative bounded noises are studied by the generalized cell mapping method using digraph analysis algorithm. From the global viewpoint, stochastic bifur- cation can be described as a sudden change in shape and size of a random attractor as the system parameter valies. The evolu- tionary process of stochastic bifurcation in the SD oscillator is shown in detail. Meanwhile, we show the phenomenon that un- der stochastic excitation the shape and size of random attractor and random saddle change along with the direction of unstable manifold. A plane stochastic bifurcation diagram is included.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832004 and 11102006)the FanZhou Foundation (Grant No. 20110502)
文摘An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form,these invariant manifolds can be approximated arbitrarily closely as Taylor series around Lagrange points.These invariant manifolds are represented by algebraic equations containing the state variables only without the help of time.Thus the so-called geometric structure of these invariant manifolds is obtained.The stable,unstable and center manifolds are tangent to the stable,unstable and center eigenspaces,respectively.As an example of applicability,the invariant manifolds of L 1 point of the Sun-Earth system are considered.The stable and unstable manifolds are symmetric about the line from the Sun to the Earth,and they both reach near the Earth,so that the low energy transfer trajectory can be found based on the stable and unstable manifolds.The periodic or quasi-periodic orbits,which are chosen as nominal arrival orbits,can be obtained based on the center manifold.