期刊文献+
共找到2,092篇文章
< 1 2 105 >
每页显示 20 50 100
基于递归定量分析与多核学习支持向量机的玻璃纤维增强复合材料缺陷识别技术
1
作者 郭伟 王召巴 +1 位作者 陈友兴 吴其洲 《测试技术学报》 2024年第1期79-84,共6页
为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中... 为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中不同类型缺陷的能力。结果表明,该模型能够准确识别GFRP中的分层缺陷与夹杂缺陷,检测识别率达到92.92%,并且与基于离散小波变换(Discrete Wavelet Transform,DWT)和经验模态分解(Empirical Mode Decomposition,EMD)的MKLSVM检测模型的识别率相比,所提出的检测模型的识别率分别提高了7.5%和3.75%。 展开更多
关键词 玻璃纤维增强复合材料 超声检测 递归定量分析 学习支持向量
下载PDF
基于改进核函数的支持向量机天然气脱硫装置故障诊断方法
2
作者 何宇琪 张波 +1 位作者 王俊超 熊鹏 《天然气与石油》 2024年第4期94-100,共7页
针对传统脱硫故障诊断方法反应慢、诊断准确率低的问题,根据Mercer理论,改进了支持向量机(Support Vector Machine,SVM)的核函数及其参数,建立了一个由多项式核函数、Sigmoid核函数和高斯径向基核函数复合成的改进核函数,在此基础上提... 针对传统脱硫故障诊断方法反应慢、诊断准确率低的问题,根据Mercer理论,改进了支持向量机(Support Vector Machine,SVM)的核函数及其参数,建立了一个由多项式核函数、Sigmoid核函数和高斯径向基核函数复合成的改进核函数,在此基础上提出了一种基于改进核函数的SVM天然气脱硫装置故障诊断方法。相对于传统SVM,改进SVM体现了各单一核函数的优点,并具有更好的学习效率及诊断准确率,在小样本数据条件下仍然具有较好的泛化能力。利用HYSYS软件建模并与现场数据进行对比实验,由实验结果可知改进SVM的误差率降低到传统SVM误差率的约30%,验证了新方法能有效提高脱硫装置故障诊断的准确率和效率。研究结果有助于天然气脱硫装置故障诊断系统工作的智能化开展,同时也为故障诊断方法的研究提供了借鉴。 展开更多
关键词 改进函数 支持向量 HYSYS 天然气脱硫 故障诊断
下载PDF
基于参数优化多核支持向量机的光伏功率预测算法
3
作者 贺亦琛 师长立 +2 位作者 郭小强 贺伟 韩涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期394-404,共11页
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处... 准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 展开更多
关键词 光伏 预测 主成分分析 支持向量 灰狼优化算法
下载PDF
多核支持向量机预测电网系统可靠性
4
作者 何井龙 张福泉 +1 位作者 阳晟 周智成 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第4期462-467,共6页
为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠... 为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠性指标特征;将高斯核函数、多项式核函数和Sigmoid核函数进行多核组合,采用多核支持向量机求解不同目标函数,获得电网系统可靠性预测结果,进而确定更佳的可靠性预测核函数组合。结果表明,合理选择核函数组合和电网可靠性指标,多核支持向量机对供电可用率、户均停电时间和户均停电次数指标预测准确率较高,且稳定性好,高斯核函数-Sigmoid核函数组合的可靠性预测准确性最佳,高斯核函数-多项式核函数-Sigmoid核函数组合的预测稳定性最好。 展开更多
关键词 电网系统可靠性 函数 支持向量 目标函数
下载PDF
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
5
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第6期147-153,共7页
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学... 针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。 展开更多
关键词 支持向量 Optuna优化框架 L_(p)范数约束 学习 不平衡数据集 违约风险预测
下载PDF
基于粒子群优化支持向量机的纱线质量预测 被引量:1
6
作者 章军辉 陈明亮 +2 位作者 郭晓满 付宗杰 王静贤 《棉纺织技术》 CAS 2024年第4期16-22,共7页
针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知... 针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知识库筛选出主要的原棉纤维指标;其次,针对小样本预测问题,建立了线性核、多项式核、高斯核以及自适应带宽RBF核等不同核函数支持向量回归(SVR)预测模型;最后,采用粒子群优化(PSO)算法对高斯核SVR模型的超参数(正则化系数和带宽调节参数)进行辨识,设计一种综合适应度函数与线性递减惯性权重策略,用以提高PSO算法的寻优能力。仿真结果表明:PSO优化高斯核SVR模型对不同成纱质量指标有较好的预测效果,其平均相对误差不超过2%。认为:PSO优化高斯核SVR模型对成纱质量指标的预测误差较低,具有良好的适应性。 展开更多
关键词 支持向量 粒子群优化 灰色关联 纱线质量预测 函数
下载PDF
支持向量机发展历程及其应用 被引量:4
7
作者 李召桐 《信息系统工程》 2024年第3期124-126,共3页
股票投资作为一种常见的投资方式,其投资方法也日新月异。越来越多的投资分析师利用计算机分析数据的优势来进行股票交易。支持向量机(Support Vector Machine,SVM)作为一种数据挖掘技术,在高维、非线性、过拟合等问题上具有较强处理能... 股票投资作为一种常见的投资方式,其投资方法也日新月异。越来越多的投资分析师利用计算机分析数据的优势来进行股票交易。支持向量机(Support Vector Machine,SVM)作为一种数据挖掘技术,在高维、非线性、过拟合等问题上具有较强处理能力,在股价预测方面表现出特有优势。系统论述了支持向量机的发展及其在预测领域中的应用,并构建SVM股票预测模型,运用股票数据对股票进行涨跌情况预测,通过选取核函数以及调整参数,并计算准确率、精确度、召回率、F1值等预测模型评估指标,分别进行SVM模型和SVM_RBF模型构建及模型效果评估。 展开更多
关键词 支持向量 股价预测 函数
下载PDF
支持向量机核函数选择与样本数据关系探索研究
8
作者 庄连英 申炜涛 +1 位作者 栗世岳 付世勋 《中文科技期刊数据库(全文版)工程技术》 2023年第2期9-13,共5页
支持向量机算法是一个传统且成熟的机器学习模型,该算法在分类场景下广泛应用,而核函数选择是影响支持向量机分类效果的核心因素之一。本文通过控制变量方法,选取多种多分类数据进行实验,探究样本数据的数据特征维度、训练样本数量、数... 支持向量机算法是一个传统且成熟的机器学习模型,该算法在分类场景下广泛应用,而核函数选择是影响支持向量机分类效果的核心因素之一。本文通过控制变量方法,选取多种多分类数据进行实验,探究样本数据的数据特征维度、训练样本数量、数据分类数量对于线性核函数、多项式核函数、高斯核函数、Sigmoid核函数四种传统主要核函数分类正确率效果的影响。实验中发现数据集的特征维度大小、训练集数量与支持向量机算法最后的识别正确率呈正相关,数据集的分类数和识别正确率呈负相关;使用高斯核函数的支持向量机算法识别效果优于其他三种核函数的识别效果;线性核函数适合于训练集数量较少的情况,在训练集数量较多时可以选择高斯核函数,高斯核函数对于数据集特征维度大小并不敏感,都较优于其他三个核函数的效果。 展开更多
关键词 支持向量 函数 高斯 线性
下载PDF
基于核函数支持向量回归的盾构姿态预测方法
9
作者 薛飞 徐建 +5 位作者 许迎顺 吴坚 郭平 曾少翔 肖方初 李泽华 《浙江工业大学学报》 CAS 北大核心 2024年第5期492-498,共7页
盾构机在掘进过程中,常因盾构机姿态控制不良导致一系列工程事故。为满足盾构隧道施工需求,需要找到一种能准确预测盾构姿态的方法,以达到合理纠偏的目的。提出了一种基于小波阈值去噪和支持向量回归(SVR)的盾构姿态预测方法,利用箱型... 盾构机在掘进过程中,常因盾构机姿态控制不良导致一系列工程事故。为满足盾构隧道施工需求,需要找到一种能准确预测盾构姿态的方法,以达到合理纠偏的目的。提出了一种基于小波阈值去噪和支持向量回归(SVR)的盾构姿态预测方法,利用箱型分析法筛选并清洗原始数据异常值,采用小波阈值去噪对数据训练集进行降噪处理,有效地提高了模型的性能。以可决系数R 2平均绝对误差MAE作为评价指标,评估了4种核函数的SVR盾构姿态预测效果。依托杭州某盾构工程,验证了该方法的有效性。研究结果表明:原始数据经过异常值清洗、小波阈值去噪后,线性核函数SVR预测表现最好,刀盘水平姿态的R 2和MAE分别达到0.930和8.180 mm,盾尾水平姿态的R 2和MAE分别达到0.949和7.061 mm。 展开更多
关键词 隧道 盾构 箱型分析法 小波阈值去噪 函数 支持向量
下载PDF
基于细菌觅食优化多核支持向量机的作物生长环境控制 被引量:2
10
作者 蔡桂全 陶建平 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第3期303-308,共6页
为了解决大规模生长环境变量所带来的计算复杂度较高的问题,采用细菌觅食优化多核支持向量机算法对农作物产量进行预测分析,从而实现作物生长环境的最优控制;首先,采用高斯核函数、多项式核函数和Sigmoid核函数组合方式建立多核支持向量... 为了解决大规模生长环境变量所带来的计算复杂度较高的问题,采用细菌觅食优化多核支持向量机算法对农作物产量进行预测分析,从而实现作物生长环境的最优控制;首先,采用高斯核函数、多项式核函数和Sigmoid核函数组合方式建立多核支持向量机,其输入为作物生长环境,采用细菌觅食优化算法优化核函数关键参数;其次,利用多核函数的参数构建菌群进行训练,设置作物产量作为细菌觅食优化算法适应度;最后,通过菌群位置更新优化后的最优核函数参数进行多核支持向量机优化求解,获得空气温度、湿度,土壤温度、湿度等生长环境特征数据。结果表明,选择合适的多核函数组合,并合理设置细菌觅食优化算法的引力和斥力系数、迁徙概率阈值等参数,能够获得最高产量所对应的作物生长环境特征数据。 展开更多
关键词 智慧农业 支持向量 细菌觅食优化算法 生长环境
下载PDF
基于支持向量机的风电并网短期负荷预测方法
11
作者 赵焱斌 《电气时代》 2024年第9期32-34,共3页
在对风电并网短期负荷进行预测时,由于历史负荷数据、风速数据和时间数据等特征具有多维度属性,导致预测结果的准确性难以得到保障。为此,提出基于支持向量机的风电并网短期负荷预测方法研究。通过构建风电并网支持向量机,将负荷预测问... 在对风电并网短期负荷进行预测时,由于历史负荷数据、风速数据和时间数据等特征具有多维度属性,导致预测结果的准确性难以得到保障。为此,提出基于支持向量机的风电并网短期负荷预测方法研究。通过构建风电并网支持向量机,将负荷预测问题转化为二次规划问题,将历史负荷数据、风速数据和时间数据等作为特征,以高斯核函数为基础,构建风电并网数据的特征空间,并为其建立的映射也同样为非线性映射机制。在短期负荷预测阶段,利用风电并网向量机特征的深度学习结果对映射进行校正,代入具体的运行数据,即可得到对应的预测结果。 展开更多
关键词 深度学习 支持向量 时间数据 高斯函数 非线性映射 特征空间 短期负荷 负荷数据
下载PDF
基于黑猩猩算法优化支持向量机的变电站接地网腐蚀速率预测
12
作者 李雨涵 刘燕燕 +2 位作者 刘闯 刘海 徐达 《湖南电力》 2024年第2期77-83,共7页
为了提高变电站接地网腐蚀速率预测结果的准确性,提出一种基于黑猩猩算法优化支持向量机的变电站接地网腐蚀速率预测方法。首先对变电站接地网腐蚀速率的特征量进行核主成分分析,确定土壤电阻率、Cl^(-)质量分数、含水量、氧化还原电位... 为了提高变电站接地网腐蚀速率预测结果的准确性,提出一种基于黑猩猩算法优化支持向量机的变电站接地网腐蚀速率预测方法。首先对变电站接地网腐蚀速率的特征量进行核主成分分析,确定土壤电阻率、Cl^(-)质量分数、含水量、氧化还原电位与腐蚀速率的关联性较大,选择上述四个特征量作为接地网腐蚀速率预测模型的输入量。然后采用黑猩猩算法对支持向量机进行参数寻优,建立变电站接地网腐蚀速率预测模型。最后采用腐蚀试验数据进行算例分析,并与其他方法的预测效果对比。结果表明,所提模型预测结果的平均相对误差为2.984%,均方根误差为0.00889 mm/a,比其他方法误差波动更小,预测精度更高,验证了所提变电站接地网腐蚀速率预测方法的实用性和优越性。 展开更多
关键词 变电站接地网 腐蚀速率预测 主成分分析 黑猩猩算法 支持向量
下载PDF
基于多核支持向量机的句子分类算法 被引量:2
13
作者 肖开研 廉洁 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期85-94,共10页
主流句子分类算法采用单一词向量表示模型获得文本表示,导致了对文本的映射能力不足.对此,通过融合多种词向量的文本表示以提高分类的准确率.针对多核学习在融合不同核函数时,常规的核函数系数寻优方法存在的训练时间长、难以求得局部... 主流句子分类算法采用单一词向量表示模型获得文本表示,导致了对文本的映射能力不足.对此,通过融合多种词向量的文本表示以提高分类的准确率.针对多核学习在融合不同核函数时,常规的核函数系数寻优方法存在的训练时间长、难以求得局部最优解等问题,提出了一种新的核函数系数寻优方法,该方法基于参数空间分割与广度优先搜索不断逼近核系数的最优值.以支持向量机(support vector machine,SVM)为分类器,在7个文本数据集上进行了分类实验.实验结果表明,多核学习分类效果明显优于单核学习,并且所提出的寻优方法在训练次数少于常规方法时也能获得了好的分类效果. 展开更多
关键词 自然语言处理 句子分类 学习 支持向量 混合
下载PDF
两阶段不定核支持向量机
14
作者 史娜 薛晖 汪云云 《计算机科学与探索》 CSCD 北大核心 2020年第4期598-605,共8页
近年来,在机器学习的各个领域出现了越来越多不定的度量核矩阵,使得不定核支持向量机(IKSVM)得到了广泛关注。但是,现有IKSVM算法通常不能较好地解决高维数据所带来的信息冗余和样本稀疏等问题。针对此研究现状,对现有主流的IKSVM算法... 近年来,在机器学习的各个领域出现了越来越多不定的度量核矩阵,使得不定核支持向量机(IKSVM)得到了广泛关注。但是,现有IKSVM算法通常不能较好地解决高维数据所带来的信息冗余和样本稀疏等问题。针对此研究现状,对现有主流的IKSVM算法进行了研究,并基于再生核Kre?n空间(RKKS)中对IKSVM问题的稳定化定义,从理论上证明了IKSVM问题的本质为不定核主成分分析(IKPCA)降维后空间中的支持向量机(SVM)问题,进一步地提出求解IKSVM问题的新型学习框架TP-IKSVM。TP-IKSVM通过将IKSVM问题的求解拆分为IKPCA和SVM两个阶段,充分地发挥了IKPCA在处理高维数据的信息冗余和样本稀疏等方面的优势,同时结合SVM以有效分类。在真实数据集上的实验结果表明,TP-IKSVM的分类精度优于现有主流的IKSVM算法。 展开更多
关键词 不定 再生Krein空间(RKKS) 不定主成分分析(IKPCA) 不定支持向量(iksvm)
下载PDF
基于支持向量机和象群优化算法的入侵检测技术研究 被引量:1
15
作者 路春辉 《信息技术》 2023年第9期64-70,共7页
随着信息技术的发展,网络攻击手段日渐多样化、复杂化,传统的网络入侵检测工具在网络环境中的检测准确率较低,难以应对复杂的网络攻击,因此该研究从支持向量机的分类特点出发,对象群优化算法进行改进并将其与支持向量机进行结合,建立入... 随着信息技术的发展,网络攻击手段日渐多样化、复杂化,传统的网络入侵检测工具在网络环境中的检测准确率较低,难以应对复杂的网络攻击,因此该研究从支持向量机的分类特点出发,对象群优化算法进行改进并将其与支持向量机进行结合,建立入侵检测模型;针对入侵检测模型的参数选定性能与实际检测效果进行分析。结果显示该次设计的模型对普通攻击类型的检测正确率高达96.45%,对普通攻击类型的检测误报率低至5.72%,在面对不同攻击类型时都能保持良好的检测效果,维持良好的稳定性与鲁棒性。 展开更多
关键词 入侵检测 支持向量 象群算法 函数 惩罚因子
下载PDF
应用多分类多核学习支持向量机的变压器故障诊断方法 被引量:97
16
作者 郭创新 朱承治 +2 位作者 张琳 彭明伟 刘毅 《中国电机工程学报》 EI CSCD 北大核心 2010年第13期128-134,共7页
提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多... 提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多个基核函数的组合,提高了分类的精度;将模型分解为2个凸优问题进行求解,问题的复杂度低,求解速度快。诊断实例表明,该方法能保证较高的诊断准确率,具有较好的实用性和推广性。 展开更多
关键词 变压器 故障诊断 支持向量 多分类多学习
下载PDF
基于核函数支持向量回归机的耕地面积预测 被引量:42
17
作者 王霞 王占岐 +1 位作者 金贵 杨俊 《农业工程学报》 EI CAS CSCD 北大核心 2014年第4期204-211,共8页
科学预测耕地保有量是耕地保护的基础,对缓解用地矛盾、保证粮食安全具有重要指导意义。为探讨不同核函数支持向量回归机(support vector regression,SVR)对耕地面积预测的影响,该文以惠州市为例,分别采用多元回归、BP神经网络及3种不... 科学预测耕地保有量是耕地保护的基础,对缓解用地矛盾、保证粮食安全具有重要指导意义。为探讨不同核函数支持向量回归机(support vector regression,SVR)对耕地面积预测的影响,该文以惠州市为例,分别采用多元回归、BP神经网络及3种不同核函数SVR建立耕地面积预测模型并进行对比试验。预测结果精度分析显示,RBF核函数SVR预测结果平均相对误差为0.54%,均方根误差为0.007,精度最高;Sigmoid核函数SVR预测结果对应误差分别为1.12%及0.012,精度次之;多项式核函数SVR预测结果对应误差为分别为2.71%及0.032,高于BP神经网络模型,但低于多元回归模型。研究表明,在现有3种常用核函数SVR耕地面积预测模型中,基于RBF核函数SVR模型预测能力最强,其次是sigmoid核函数;而多项式核函数则效果较差。 展开更多
关键词 土地利用 支持向量 预测 耕地 函数 惠州市
下载PDF
基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法 被引量:26
18
作者 李云淏 咸日常 +4 位作者 张海强 赵飞龙 李嘉洋 王玮 李增悦 《电网技术》 EI CSCD 北大核心 2023年第4期1470-1477,共8页
电力变压器运行故障的准确诊断有利于提高变电设备状态检修和电网安全运行水平,为实现故障的准确分类,文章以油中溶解的5种典型气体作为故障诊断的特征量,提出一种基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法。... 电力变压器运行故障的准确诊断有利于提高变电设备状态检修和电网安全运行水平,为实现故障的准确分类,文章以油中溶解的5种典型气体作为故障诊断的特征量,提出一种基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法。该方法通过改进灰狼算法寻求最小二乘支持向量机中的最优惩罚系数C和核函数参数g,用以提高故障诊断的准确率。首先阐明最小二乘支持向量机和灰狼算法的改进点并将二者耦合,将其代入413组电力变压器的油中溶解气体检测数据来诊断故障类型,与其他诊断方法进行对比;其次研究惩罚系数C和核函数参数g对电力变压器故障类型识别准确率的影响规律;最后借助训练后的改进灰狼算法与最小二乘支持向量机耦合方法,通过两台不同电压等级的变压器故障实例分析,验证了故障诊断方法的有效性。研究结果表明:相较于单一使用最小二乘支持向量机和传统灰狼算法与最小二乘支持向量机耦合,改进灰狼算法与最小二乘支持向量机耦合方法对电力变压器故障诊断的准确率分别提高了14%和7%。此外,惩罚系数C和核函数参数g对电力变压器故障类型识别准确率的影响呈现非线性规律,凸显了通过智能算法找到最优解的便捷性、必要性、有效性。 展开更多
关键词 改进灰狼算法 最小二乘支持向量 惩罚系数 函数参数 电力变压器 油中气体 故障诊断
下载PDF
顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价 被引量:19
19
作者 刘纪平 梁恩婕 +4 位作者 徐胜华 刘猛猛 王勇 张福浩 罗安 《测绘学报》 EI CSCD 北大核心 2022年第10期2034-2045,共12页
滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易... 滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易发性分析评价方法。为了保证样本平衡性并提高负样本的合理性,采用相对频率比(relative frequency,RF)综合评价各状态对于滑坡灾害易发性影响的重要程度,实现各评价因子状态的合理划分;利用确定性系数法(certainty factor,CF)计算各评价因子各状态分级影响滑坡灾害的敏感性,并在此基础上进行加权求和得到各栅格单元的滑坡灾害易发性指数,在滑坡灾害易发性指数极低和低易发区内随机选择与滑坡灾害点数目一致的非滑坡灾害点作为负样本数据。利用MKSVM对各特征空间最优核函数进行线性组合,解决了单一核函数映射不合理的问题,提高了模型的分类准确率和预测精度。以湖南省湘西土家族苗族自治州为研究区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面对CF样本策略的MKSVM模型、CF样本策略的单核SVM模型、随机样本策略的MKSVM模型、随机样本策略的单核SVM模型进行了对比分析。结果表明,4种模型的受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under curve,AUC)分别为0.859、0.809、0.798、0.766,验证了CF样本策略的合理性、有效性及MKSVM模型的可靠性。 展开更多
关键词 滑坡 易发性 确定性系数 支持向量
下载PDF
组合核函数支持向量机高光谱图像融合分类 被引量:23
20
作者 高恒振 万建伟 +2 位作者 粘永健 王力宝 徐湛 《光学精密工程》 EI CAS CSCD 北大核心 2011年第4期878-883,共6页
针对高光谱图像分类,提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维,用虚拟维数估计策略预估原始图像的本征维数,并且在预估的基础上确定要保留... 针对高光谱图像分类,提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维,用虚拟维数估计策略预估原始图像的本征维数,并且在预估的基础上确定要保留的主成份分量数目;然后用数学形态学操作在选取的主分量图像上提取目标的形态信息,得到扩展的空域形态矢量。最后,通过不同的组合策略,构造组合核函数,从而在分类器中引入空域信息,和原有的谱域信息一起,利用支持向量机进行分类。高光谱数据实验表明,在训练时间没有显著差别的情况下,总体分类精度和Kappa系数均提高了2%左右。实验表明,本文提出的方法较单独使用谱域或空域信息进行分类具有一定的优越性。 展开更多
关键词 高光谱图像 图像融合 数学形态学 组合函数 支持向量
下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部