期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
线性变系数差分方程的时域求解方法
1
作者 陈绍荣 刘郁林 +1 位作者 朱桂斌 何为 《重庆电力高等专科学校学报》 2016年第6期38-42,共5页
以线性变系数微分方程的求解方法为依据,用类比法,提出了序列的原序列的概念,提出了后向差分运算对应的逆运算,即序列的不定求和,揭示了线性变系数差分方程的解结构。导出了一阶线性变系数差分方程的通解公式,基于一阶线性变系数差分方... 以线性变系数微分方程的求解方法为依据,用类比法,提出了序列的原序列的概念,提出了后向差分运算对应的逆运算,即序列的不定求和,揭示了线性变系数差分方程的解结构。导出了一阶线性变系数差分方程的通解公式,基于一阶线性变系数差分方程的通解公式,利用降阶方法,导出了二阶线性变系数差分方程的通解公式,有效地解决了部分线性变系数差分方程的时域求解问题。 展开更多
关键词 原序列 不定求和 变系数 差分方程 降阶法
下载PDF
A PENALTY FUNCTION METHOD FOR SOLVING ILL-POSED BILEVEL PROGRAMMING PROBLEM VIA WEIGHTED SUMMATION 被引量:2
2
作者 JIA Shihui WAN Zhongping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2013年第6期1019-1027,共9页
For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfacto... For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfactory degree in application.To acquire a more satisfying solution than the optimistic one to realize the two levels' most profits,this paper considers both levels' satisfactory degree and constructs a minimization problem of the two objective functions by weighted summation.Then,using the duality gap of the lower level as the penalty function,the authors transfer these two levels problem to a single one and propose a corresponding algorithm.Finally,the authors give an example to show a more satisfying solution than the optimistic solution can be achieved by this algorithm. 展开更多
关键词 Bilevel programming duality gap penalty function satisfactory degree weighted sum-mation.
原文传递
Surface Sum of Heegaard Splittings
3
作者 ZHANG Ming Xing 《Journal of Mathematical Research and Exposition》 CSCD 2009年第3期558-562,共5页
Suppose Mi = Vi ∪ Wi (i = 1,2) are Heegaard splittings. A homeomorphism f : F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2, where Fi ∪→ δ_Wi. In this paper we define a surface sum of Heegaard splittin... Suppose Mi = Vi ∪ Wi (i = 1,2) are Heegaard splittings. A homeomorphism f : F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2, where Fi ∪→ δ_Wi. In this paper we define a surface sum of Heegaard splittings induced from the Heegaard splittings of M1 and M2, and give a sufficient condition when the surface sum of Heegaard splitting is stabilized. We also give examples showing that the surface sum of Heegaard splittings can be unstabilized. This indicates that the surface sum of Heegaard splittings and the amalgamation of Heegaard splittings can give different Heegaard structures. 展开更多
关键词 Heegaard splitting STABILIZED AMALGAMATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部