For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfacto...For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfactory degree in application.To acquire a more satisfying solution than the optimistic one to realize the two levels' most profits,this paper considers both levels' satisfactory degree and constructs a minimization problem of the two objective functions by weighted summation.Then,using the duality gap of the lower level as the penalty function,the authors transfer these two levels problem to a single one and propose a corresponding algorithm.Finally,the authors give an example to show a more satisfying solution than the optimistic solution can be achieved by this algorithm.展开更多
Suppose Mi = Vi ∪ Wi (i = 1,2) are Heegaard splittings. A homeomorphism f : F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2, where Fi ∪→ δ_Wi. In this paper we define a surface sum of Heegaard splittin...Suppose Mi = Vi ∪ Wi (i = 1,2) are Heegaard splittings. A homeomorphism f : F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2, where Fi ∪→ δ_Wi. In this paper we define a surface sum of Heegaard splittings induced from the Heegaard splittings of M1 and M2, and give a sufficient condition when the surface sum of Heegaard splitting is stabilized. We also give examples showing that the surface sum of Heegaard splittings can be unstabilized. This indicates that the surface sum of Heegaard splittings and the amalgamation of Heegaard splittings can give different Heegaard structures.展开更多
基金supported by the National Science Foundation of China under Grant No.71171150the National Natural Science Foundation of ChinaTian Yuan Foundation under Grant No.11226226
文摘For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfactory degree in application.To acquire a more satisfying solution than the optimistic one to realize the two levels' most profits,this paper considers both levels' satisfactory degree and constructs a minimization problem of the two objective functions by weighted summation.Then,using the duality gap of the lower level as the penalty function,the authors transfer these two levels problem to a single one and propose a corresponding algorithm.Finally,the authors give an example to show a more satisfying solution than the optimistic solution can be achieved by this algorithm.
基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411069)
文摘Suppose Mi = Vi ∪ Wi (i = 1,2) are Heegaard splittings. A homeomorphism f : F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2, where Fi ∪→ δ_Wi. In this paper we define a surface sum of Heegaard splittings induced from the Heegaard splittings of M1 and M2, and give a sufficient condition when the surface sum of Heegaard splitting is stabilized. We also give examples showing that the surface sum of Heegaard splittings can be unstabilized. This indicates that the surface sum of Heegaard splittings and the amalgamation of Heegaard splittings can give different Heegaard structures.