期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于注意力机制和不对称卷积的目标跟踪算法 被引量:1
1
作者 李锦瑞 张轶 《计算机工程与设计》 北大核心 2023年第10期3110-3116,共7页
一般孪生网络跟踪算法中目标模板不会更新,模板分支与搜索分支在计算时相互独立,无法进行鲁棒跟踪,使用深度互相关来融合两分支的特征有着容易被干扰物欺骗、激活通道数少、对目标边界的分辨能力较弱,且不能充分受益于大规模的离线训练... 一般孪生网络跟踪算法中目标模板不会更新,模板分支与搜索分支在计算时相互独立,无法进行鲁棒跟踪,使用深度互相关来融合两分支的特征有着容易被干扰物欺骗、激活通道数少、对目标边界的分辨能力较弱,且不能充分受益于大规模的离线训练,为此提出一种基于注意力机制和不对称卷积的目标跟踪算法。设计增强注意力网络增强和传递分支信息。采用不对称卷积来代替深度互相关,使用有效的参数学习如何更好地互相关。所提算法在OTB100、LaSOT、VOT2019上做了对比实验,实验结果表明,所提算法表现较好,性能优于现有的多个先进跟踪器。 展开更多
关键词 深度学习 目标跟踪 孪生网络 特征融合 注意力机制 互相关 不对称卷积
下载PDF
基于U-Net的遥感图像语义分割 被引量:7
2
作者 陈松钰 左强 王志芳 《无线电工程》 北大核心 2022年第1期168-172,共5页
遥感图像由于包含的地物尺度差别大、地物边界复杂等原因,造成准确提取遥感图像特征具有一定难度,精确分割遥感图像比较困难。针对这一问题,提出了一种编码-解码器的AFU-Net网络。在U-Net基础上使用一个自下而上、自上而下的结构,并引... 遥感图像由于包含的地物尺度差别大、地物边界复杂等原因,造成准确提取遥感图像特征具有一定难度,精确分割遥感图像比较困难。针对这一问题,提出了一种编码-解码器的AFU-Net网络。在U-Net基础上使用一个自下而上、自上而下的结构,并引入密集跳跃连接得到融合不同层次的多尺度特征。使用非对称卷积块强化水平和垂直方向的平方卷积核,并采用残差单元加深网络深度。利用FReLU激活函数提升网络解析能力,从而提高遥感图像语义分割精度。在ISPRS的Vaihingen数据集实验结果表明,AFU-Net结构的性能要优于FCN,U-Net等算法。 展开更多
关键词 遥感图像 U-Net 多尺度特征 不对称卷积 FReLU
下载PDF
U-net改进的视网膜血管图像分割算法 被引量:7
3
作者 王原 马瑜 +3 位作者 江妍 梁远哲 马鼎 李霞 《计算机工程与设计》 北大核心 2021年第10期2884-2893,共10页
传统抽取算法在病灶、细节区域存在分割不精准的问题。改进算法对U-net深度神经网络进行改进,在网络底层加入Dense-net网络中的稠密连接方式,使用BConvLSTM来组合编码器和解码器的特征信息,结合AC-net思想提出MultiAc模块,在U-net下采... 传统抽取算法在病灶、细节区域存在分割不精准的问题。改进算法对U-net深度神经网络进行改进,在网络底层加入Dense-net网络中的稠密连接方式,使用BConvLSTM来组合编码器和解码器的特征信息,结合AC-net思想提出MultiAc模块,在U-net下采样和上采样过程加入该模块,帮助网络学习更复杂的特征信息,在预测过程中提高精确率。通过在DRIVE、STARE、CHASE_DB1这3个公开眼底数据库的实验,分割结果的客观评价指标与主观视觉验证了改进算法在分割精度方面的有效性。 展开更多
关键词 视网膜血管提取 U型网络 稠密卷积网络 双向卷积长短时记忆网络 不对称卷积网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部