The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon ...The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.展开更多
The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical m...The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibra-tion characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material charac-teristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the in-creasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations.展开更多
Recently, inwardly propagating waves (called antiwaves, AWs) in nonlinear oscillatory systems have attracted much attention. An interesting negative refraction phenomenon has been observed in a bidomain system where...Recently, inwardly propagating waves (called antiwaves, AWs) in nonlinear oscillatory systems have attracted much attention. An interesting negative refraction phenomenon has been observed in a bidomain system where one medium supports forwardly propagating waves (normal waves, NWs) and the other AWs. In this paper we find that negative refraction (NR) in nonlinear media has an asymmetric property, i.e., NR can be observed only by applying wave source with proper frequency to one medium, but not the other. Moreover, NR appears always when the incident waves are dense and the refractional waves are sparse. This asymmetry is a particular feature for nonlinear NR, which can neither be observed in linear refraction processes (both positive and negative refractions) nor in nonlinear positive refraction. The mechanism underlying the asymmetry of nonlinear NR are fully understood based on the competition of nonlinear waves.展开更多
A new strategy of thermally activated delayed fluorescence(TADF)material-sensitized circularly polarized luminescence(CPL)has been proposed for improving the efficiencies of fluorescent circularly polarized organic li...A new strategy of thermally activated delayed fluorescence(TADF)material-sensitized circularly polarized luminescence(CPL)has been proposed for improving the efficiencies of fluorescent circularly polarized organic lightemitting diodes(OLEDs)(CP-OLEDs).Consequently,a pair of helicene enantiomers,(P)-HAI and(M)-HAI,were synthesized.The helicene enantiomers with the rigid helicalπ-skeleton had highly thermal and enantiomeric stabilities,and they also showed excellent photophysical properties,especially,intense mirror-image CPL activities with large luminescence dissymmetry factor(|g_(lum)|)values of about 6×10^(-3).Notably,the CP-OLEDs with the helicene enantiomers as emitters and a TADF molecule as sensitizer not only displayed better performance of lower turn-on voltage(V_(T))of 2.6 V,four-fold maxmium-external quantum efficiency(EQE_(max))of 5.3%,and lower efficiencies roll-off of 1.9%at 1000 cd m^(-2),than those of the devices without TADF sensitizer,but also exhibited intense circularly polarized electroluminescence(CPEL)with the electroluminescence dissymmetry factor(g_(EL))values of-2.3×10^(-3)and+3.0×10^(-3).Meanwhile,this study also represents the first thermally activated sensitized fluorescent CP-OLEDs with markedly enhanced efficiencies and intense CPEL.展开更多
基金Project(51275451)supported by the National Natural Science Foundation of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China+1 种基金Project(2013CB035400)supported by the National Basic Research Program of ChinaProject(2011BAK03B09)supported by the National Key Technology R&D Program of China
文摘The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.
基金Project (No. 30170533) supported by the National Natural ScienceFoundation of China
文摘The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibra-tion characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material charac-teristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the in-creasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations.
基金Supported by the National Natural Science Foundation of China under Grant No.10675020the National 973 Nonlinear Science Project
文摘Recently, inwardly propagating waves (called antiwaves, AWs) in nonlinear oscillatory systems have attracted much attention. An interesting negative refraction phenomenon has been observed in a bidomain system where one medium supports forwardly propagating waves (normal waves, NWs) and the other AWs. In this paper we find that negative refraction (NR) in nonlinear media has an asymmetric property, i.e., NR can be observed only by applying wave source with proper frequency to one medium, but not the other. Moreover, NR appears always when the incident waves are dense and the refractional waves are sparse. This asymmetry is a particular feature for nonlinear NR, which can neither be observed in linear refraction processes (both positive and negative refractions) nor in nonlinear positive refraction. The mechanism underlying the asymmetry of nonlinear NR are fully understood based on the competition of nonlinear waves.
基金the National Natural Science Foundation of China(21871272,91956119 and 21521002)the Youth Innovation Promotion Association CAS(2019034)Qingdao University of Science and Technology(QUSTHX201929)。
文摘A new strategy of thermally activated delayed fluorescence(TADF)material-sensitized circularly polarized luminescence(CPL)has been proposed for improving the efficiencies of fluorescent circularly polarized organic lightemitting diodes(OLEDs)(CP-OLEDs).Consequently,a pair of helicene enantiomers,(P)-HAI and(M)-HAI,were synthesized.The helicene enantiomers with the rigid helicalπ-skeleton had highly thermal and enantiomeric stabilities,and they also showed excellent photophysical properties,especially,intense mirror-image CPL activities with large luminescence dissymmetry factor(|g_(lum)|)values of about 6×10^(-3).Notably,the CP-OLEDs with the helicene enantiomers as emitters and a TADF molecule as sensitizer not only displayed better performance of lower turn-on voltage(V_(T))of 2.6 V,four-fold maxmium-external quantum efficiency(EQE_(max))of 5.3%,and lower efficiencies roll-off of 1.9%at 1000 cd m^(-2),than those of the devices without TADF sensitizer,but also exhibited intense circularly polarized electroluminescence(CPEL)with the electroluminescence dissymmetry factor(g_(EL))values of-2.3×10^(-3)and+3.0×10^(-3).Meanwhile,this study also represents the first thermally activated sensitized fluorescent CP-OLEDs with markedly enhanced efficiencies and intense CPEL.