基于微分代数控制系统的反馈线性化方法,进一步研究了具有非线性负荷的电力系统中静止无功补偿器(Static var compensator,SVC)和发电机三阶模型的励磁控制,表明具有非线性负荷和SVC装置的NDAS(3)仍可以通过状态反馈精确线性化,从而得...基于微分代数控制系统的反馈线性化方法,进一步研究了具有非线性负荷的电力系统中静止无功补偿器(Static var compensator,SVC)和发电机三阶模型的励磁控制,表明具有非线性负荷和SVC装置的NDAS(3)仍可以通过状态反馈精确线性化,从而得到具有代数方程的Brunovsky标准型。提出了具有非线性负荷的电力系统SVC与发电机励磁控制的完全精确线性化设计。该控制方法可以同时满足发电机功角稳定和SVC节点处电压。仿真结果表明该方法具有很好的效果和优越性。展开更多
针对静止无功补偿器SVC(Static Var Compensator)作为不平衡负荷补偿和电压稳定控制的工况,提出了不平衡补偿和优化控制方法。对于不平衡负荷补偿,提出基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,利用电网电压中的...针对静止无功补偿器SVC(Static Var Compensator)作为不平衡负荷补偿和电压稳定控制的工况,提出了不平衡补偿和优化控制方法。对于不平衡负荷补偿,提出基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,利用电网电压中的一相电压构造虚拟的对称三相系统,由此可以准确计算所需的补偿电纳,该方法计算简单,基于该方法的静止无功补偿器不需要硬件锁相环,能够快速、准确地补偿负荷的无功功率;对于电压稳定控制策略,提出了基于改进的单纯形加速算法SPX(Sim Ple X method)优化递推积分PI控制方法,以ITAE准则作为寻优目标函数,对PI控制器的参数Kp、Ki进行实时调整、寻优,使SVC系统的瞬态响应过程达到最佳,能快速、无超调地跟踪SVC系统的电压设定值。仿真和实验结果表明所提不平衡补偿和优化控制方法的可行性和有效性。展开更多
三相全桥静止无功发生器SVG(static var generator)应用于低压小功率中无功与负序电流的补偿。本系统采用d-q双序同步旋转的分序控制策略,从稳定系统直流侧电压出发,分析了SVG补偿的无功电流与负序电流之间的关系,推导出负序电流的补偿...三相全桥静止无功发生器SVG(static var generator)应用于低压小功率中无功与负序电流的补偿。本系统采用d-q双序同步旋转的分序控制策略,从稳定系统直流侧电压出发,分析了SVG补偿的无功电流与负序电流之间的关系,推导出负序电流的补偿范围不受正序分量的限制。在补偿额定正序无功电流时,利用三相中输出的最大电压来衡量系统补偿负序电流的最大范围。当并网系统电抗取值5 m H时,计算出电流正负序比例最高不超过43%。最后在Matlab/Simulink中搭建系统仿真模型。仿真结果验证了系统的控制策略与不平衡补偿范围计算方法的正确性。展开更多
文摘基于微分代数控制系统的反馈线性化方法,进一步研究了具有非线性负荷的电力系统中静止无功补偿器(Static var compensator,SVC)和发电机三阶模型的励磁控制,表明具有非线性负荷和SVC装置的NDAS(3)仍可以通过状态反馈精确线性化,从而得到具有代数方程的Brunovsky标准型。提出了具有非线性负荷的电力系统SVC与发电机励磁控制的完全精确线性化设计。该控制方法可以同时满足发电机功角稳定和SVC节点处电压。仿真结果表明该方法具有很好的效果和优越性。
文摘针对静止无功补偿器SVC(Static Var Compensator)作为不平衡负荷补偿和电压稳定控制的工况,提出了不平衡补偿和优化控制方法。对于不平衡负荷补偿,提出基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,利用电网电压中的一相电压构造虚拟的对称三相系统,由此可以准确计算所需的补偿电纳,该方法计算简单,基于该方法的静止无功补偿器不需要硬件锁相环,能够快速、准确地补偿负荷的无功功率;对于电压稳定控制策略,提出了基于改进的单纯形加速算法SPX(Sim Ple X method)优化递推积分PI控制方法,以ITAE准则作为寻优目标函数,对PI控制器的参数Kp、Ki进行实时调整、寻优,使SVC系统的瞬态响应过程达到最佳,能快速、无超调地跟踪SVC系统的电压设定值。仿真和实验结果表明所提不平衡补偿和优化控制方法的可行性和有效性。
文摘三相全桥静止无功发生器SVG(static var generator)应用于低压小功率中无功与负序电流的补偿。本系统采用d-q双序同步旋转的分序控制策略,从稳定系统直流侧电压出发,分析了SVG补偿的无功电流与负序电流之间的关系,推导出负序电流的补偿范围不受正序分量的限制。在补偿额定正序无功电流时,利用三相中输出的最大电压来衡量系统补偿负序电流的最大范围。当并网系统电抗取值5 m H时,计算出电流正负序比例最高不超过43%。最后在Matlab/Simulink中搭建系统仿真模型。仿真结果验证了系统的控制策略与不平衡补偿范围计算方法的正确性。