Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A s...Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations.展开更多
A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force find...A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force finding method named the imbal-ance force iterative method is proposed,which can overcome some limitations of the integrity feasible prestressing method.For instance,even if groups are assigned by mistake,the pretension distribution that satisfies the known geometry form can also be found.This method possess good stability and calculation efficiency,and a case study indicates that it is applicable to the force finding of large and complicated cable domes.On the other hand,form finding analysis of cable domes is also a key engineering problem.However,rigid displacement occurs in this process,which makes the analysis more complex.In this pa-per,the dynamic relaxation method was selected,and the problem of rigid displacement was therefore effectively solved.The method includes two steps:first,the stretching cables are released,and secondly,an axial force is imposed on the two ends of each released cable.This method is convenient in its calculation and clear in its conception.A case study indicates that the method is suitable for the simulation of the construction process of various cable domes and cable-strut tension structures.Moreover,a form finding experiment was conducted on a model of a cable dome with a diameter of 4.8 m by tensing diagonal cables.The behavior of the model in the form finding process was investigated.The experimental results indicate that the ini-tial lengths of members and prestress loss are key issues in cable domes design.The results also prove that the methods of form finding and force finding proposed in this paper are reliable and effective.展开更多
基金Project(2011FZ050) supported by Applied Basic Research Program of Yunnan Provincial Science and Technology Department,ChinaProject(2011J084) supported by Master Program of Yunnan Province Education Department,China
文摘Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations.
文摘A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force finding method named the imbal-ance force iterative method is proposed,which can overcome some limitations of the integrity feasible prestressing method.For instance,even if groups are assigned by mistake,the pretension distribution that satisfies the known geometry form can also be found.This method possess good stability and calculation efficiency,and a case study indicates that it is applicable to the force finding of large and complicated cable domes.On the other hand,form finding analysis of cable domes is also a key engineering problem.However,rigid displacement occurs in this process,which makes the analysis more complex.In this pa-per,the dynamic relaxation method was selected,and the problem of rigid displacement was therefore effectively solved.The method includes two steps:first,the stretching cables are released,and secondly,an axial force is imposed on the two ends of each released cable.This method is convenient in its calculation and clear in its conception.A case study indicates that the method is suitable for the simulation of the construction process of various cable domes and cable-strut tension structures.Moreover,a form finding experiment was conducted on a model of a cable dome with a diameter of 4.8 m by tensing diagonal cables.The behavior of the model in the form finding process was investigated.The experimental results indicate that the ini-tial lengths of members and prestress loss are key issues in cable domes design.The results also prove that the methods of form finding and force finding proposed in this paper are reliable and effective.