A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solve...A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.展开更多
In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a genera...In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Groechenig and Chen's results, respectively. So we obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to accommodate a large number of possible models. They are maybe useful for signal processing and communication theory.展开更多
Digital data of precursors is noted for its high accuracy. Therefore, it is important to extract the high frequency information from the low ones in the digital data of precursors and to discriminate between the trend...Digital data of precursors is noted for its high accuracy. Therefore, it is important to extract the high frequency information from the low ones in the digital data of precursors and to discriminate between the trend anomalies and the short-term anomalies. This paper presents a method to separate the high frequency information from the low ones by using the wavelet transform to analyze the digital data of precursors, and illustrates with examples the train of thoughts of discriminating the short-term anomalies from trend anomalies by using the wavelet transform, thus provide a new effective approach for extracting the short-term and trend anomalies from the digital data of precursors.展开更多
基金The National Natural Science Foundation of China(No.6120134461271312+7 种基金11301074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.2011009211002320120092120036)the Program for Special Talents in Six Fields of Jiangsu Province(No.DZXX-031)the Natural Science Foundation of Jiangsu Province(No.BK2012329BK2012743)the United Creative Foundation of Jiangsu Province(No.BY2014127-11)the"333"Project(No.BRA2015288)
文摘A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.
文摘In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Groechenig and Chen's results, respectively. So we obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to accommodate a large number of possible models. They are maybe useful for signal processing and communication theory.
文摘Digital data of precursors is noted for its high accuracy. Therefore, it is important to extract the high frequency information from the low ones in the digital data of precursors and to discriminate between the trend anomalies and the short-term anomalies. This paper presents a method to separate the high frequency information from the low ones by using the wavelet transform to analyze the digital data of precursors, and illustrates with examples the train of thoughts of discriminating the short-term anomalies from trend anomalies by using the wavelet transform, thus provide a new effective approach for extracting the short-term and trend anomalies from the digital data of precursors.