It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dyn...It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.展开更多
Uncertainties are common in the dating of paleoearthquakes.To improve the credibility of the dating of paleoearthquakes,analysis was done on fault activity,sedimentary environment and seismo-geomorphology to investiga...Uncertainties are common in the dating of paleoearthquakes.To improve the credibility of the dating of paleoearthquakes,analysis was done on fault activity,sedimentary environment and seismo-geomorphology to investigate paleoearthquakes along the Zemuhe active fault zone.Grouped trenches were excavated near Daqingliangzi,which revealed three palaeoearthquake events aged 160a,3100a and 5500a~8900a,respectively,including recurrence intervals of about 3000a.Sedimentary processes related to strike-slip fault type earthquakes were discussed,and a sedimentary model was put forward for strike-slip faults at hillsides where drumlin and reverse scarp developed.展开更多
Shangzhuang gold deposit located in the Wangershan fault zone of northwestern Jiaodong is of meso- hypogenic altered rock type. The ore bodies occur at the hanging wall and footwall of Wangershan fault in vein or irre...Shangzhuang gold deposit located in the Wangershan fault zone of northwestern Jiaodong is of meso- hypogenic altered rock type. The ore bodies occur at the hanging wall and footwall of Wangershan fault in vein or irregular shapes with the NE strike, NW trend, 30° -60°~ in dip and the lateral trending of SW. The ores are composed of pyrite, quartz, sericite, bismuthinite, native gold, bismuth sulfosah minerals, chalcopyrite, etc. , shown as brecciated structure and vein structure with metasomatic dissolution textures. The wall rock altera- tion is mainly described as phyllic alteration and silicification. The mineralization of this deposit is controlled by structure and altered rocks. The ore-controlling fault structures of this deposit is Wangershan fault, of which the intersection of major fault and secondary fault is the main ore-bearing position of this gold deposit, and the lar- ger arc curved position is a favorable part for ore body occurrence. On the plane, the ore body is shown as equi- distant pinch-out reproduction.展开更多
The Cenozoic basin offshore the Bohai Sea underwent a multicycle-rifting during its evolutionary process, which resulted in the multiple unconformities in the strata. The tectonic activities shown by these unconformit...The Cenozoic basin offshore the Bohai Sea underwent a multicycle-rifting during its evolutionary process, which resulted in the multiple unconformities in the strata. The tectonic activities shown by these unconformities have different manifestations and influences on the basin evolution. The authors systematically analyze the tectonic evolution characteristics of the sags off-shore the Bohai Sea with a large set of hydrocarbon exploration data. The analysis reveals that two phases of tectonic activities during the late depositional stage of the third member of Shahejie Formation (about 38 Ma) and the late depositional stage of Dongying Formation (about 24 Ma) reflect the significant changes in the basin's features and structural framework before and after these tectonic activities. As a result, the two phases of tectonic activities are recognized as important turning points (i.e., tectonic transitions) of Cenozoic basin evolution. The regional dynamic backgrounds of the two phases of tectonic transitions are also discussed. It is suggested that the early tectonic transition occurred at about 38 Ma under such regional dynamic back- ground that a huge kinematics adjustment happened between Eurasian Plate and its neighboring plates, i.e., Pacific Plate and Indian Plate. Meanwhile, the Tan-Lu Fault's slip reversed from left lateral to right lateral. The late tectonic transition occurred in late Paleogene (about 24 Ma) and reflected the Himalayan orogeny's influence on the Chinese continent and even the Asian continent; at the same time, the stress field produced by the escape tectonics was related to the Himalayan orogeny, superposed on the pre-existing stress field, and then enhanced the right lateral slip activity of the Tan-Lu Fault.展开更多
The Pliocene fluvial/lacustrine sediments of the Sanying Formation lie along the Red River fault and its northwest extension;their majority outcrops appear around Eryuan.The Sanying Formation is characterized by multi...The Pliocene fluvial/lacustrine sediments of the Sanying Formation lie along the Red River fault and its northwest extension;their majority outcrops appear around Eryuan.The Sanying Formation is characterized by multiple intercalated coal layers and its unconformities contact with the underlying Triassic limestone and the overlying Quaternary coarse sediments.Cosmogenic nuclide burial dating confirms the Pliocene age of the Sanying Formation.The burial ages of the overlying Quaternary sediments provide the lower age limit of the Sanying Formation:2 Ma.Detrital zircon U-Pb age distribution suggests provenance of the Sanying Formation traced to the Songpan-Ganzi flysch belt.From the spatial distribution as well as sedimentary and fault ages,we found a strong connection of the Sanying Formation with the Red River and the Jianchuan faults.We therefore propose that activation of the Red River and the Jianchuan faults during the Late Miocene resulted in subsidence of basins in the extensional areas around Eryuan and in the middle to south segments of the Red River fault.The basins were filled with water carried by the Jinsha River and overflow-lakes formed within the basins where the Sanying Formation was deposited.Most of the lakes were dried and sedimentation of the Sanying Formation ceased due to the uplift of the Yunling Mountains,which forced rerouting of the Jinsha River at the beginning of Quaternary.展开更多
基金Special Fund for the Major Basic Research Projects(No.G1 9990 650 )
文摘It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.
基金funded by the National Key Technology R&D Program(2004CB418401)
文摘Uncertainties are common in the dating of paleoearthquakes.To improve the credibility of the dating of paleoearthquakes,analysis was done on fault activity,sedimentary environment and seismo-geomorphology to investigate paleoearthquakes along the Zemuhe active fault zone.Grouped trenches were excavated near Daqingliangzi,which revealed three palaeoearthquake events aged 160a,3100a and 5500a~8900a,respectively,including recurrence intervals of about 3000a.Sedimentary processes related to strike-slip fault type earthquakes were discussed,and a sedimentary model was put forward for strike-slip faults at hillsides where drumlin and reverse scarp developed.
文摘Shangzhuang gold deposit located in the Wangershan fault zone of northwestern Jiaodong is of meso- hypogenic altered rock type. The ore bodies occur at the hanging wall and footwall of Wangershan fault in vein or irregular shapes with the NE strike, NW trend, 30° -60°~ in dip and the lateral trending of SW. The ores are composed of pyrite, quartz, sericite, bismuthinite, native gold, bismuth sulfosah minerals, chalcopyrite, etc. , shown as brecciated structure and vein structure with metasomatic dissolution textures. The wall rock altera- tion is mainly described as phyllic alteration and silicification. The mineralization of this deposit is controlled by structure and altered rocks. The ore-controlling fault structures of this deposit is Wangershan fault, of which the intersection of major fault and secondary fault is the main ore-bearing position of this gold deposit, and the lar- ger arc curved position is a favorable part for ore body occurrence. On the plane, the ore body is shown as equi- distant pinch-out reproduction.
基金supported by the Important National Science & Technology Specific Project (Grant No. 2011ZX05023)
文摘The Cenozoic basin offshore the Bohai Sea underwent a multicycle-rifting during its evolutionary process, which resulted in the multiple unconformities in the strata. The tectonic activities shown by these unconformities have different manifestations and influences on the basin evolution. The authors systematically analyze the tectonic evolution characteristics of the sags off-shore the Bohai Sea with a large set of hydrocarbon exploration data. The analysis reveals that two phases of tectonic activities during the late depositional stage of the third member of Shahejie Formation (about 38 Ma) and the late depositional stage of Dongying Formation (about 24 Ma) reflect the significant changes in the basin's features and structural framework before and after these tectonic activities. As a result, the two phases of tectonic activities are recognized as important turning points (i.e., tectonic transitions) of Cenozoic basin evolution. The regional dynamic backgrounds of the two phases of tectonic transitions are also discussed. It is suggested that the early tectonic transition occurred at about 38 Ma under such regional dynamic back- ground that a huge kinematics adjustment happened between Eurasian Plate and its neighboring plates, i.e., Pacific Plate and Indian Plate. Meanwhile, the Tan-Lu Fault's slip reversed from left lateral to right lateral. The late tectonic transition occurred in late Paleogene (about 24 Ma) and reflected the Himalayan orogeny's influence on the Chinese continent and even the Asian continent; at the same time, the stress field produced by the escape tectonics was related to the Himalayan orogeny, superposed on the pre-existing stress field, and then enhanced the right lateral slip activity of the Tan-Lu Fault.
基金supported by the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDB03020300)National Natural Science Foundation of China(Grant Nos.41173067&41021063)
文摘The Pliocene fluvial/lacustrine sediments of the Sanying Formation lie along the Red River fault and its northwest extension;their majority outcrops appear around Eryuan.The Sanying Formation is characterized by multiple intercalated coal layers and its unconformities contact with the underlying Triassic limestone and the overlying Quaternary coarse sediments.Cosmogenic nuclide burial dating confirms the Pliocene age of the Sanying Formation.The burial ages of the overlying Quaternary sediments provide the lower age limit of the Sanying Formation:2 Ma.Detrital zircon U-Pb age distribution suggests provenance of the Sanying Formation traced to the Songpan-Ganzi flysch belt.From the spatial distribution as well as sedimentary and fault ages,we found a strong connection of the Sanying Formation with the Red River and the Jianchuan faults.We therefore propose that activation of the Red River and the Jianchuan faults during the Late Miocene resulted in subsidence of basins in the extensional areas around Eryuan and in the middle to south segments of the Red River fault.The basins were filled with water carried by the Jinsha River and overflow-lakes formed within the basins where the Sanying Formation was deposited.Most of the lakes were dried and sedimentation of the Sanying Formation ceased due to the uplift of the Yunling Mountains,which forced rerouting of the Jinsha River at the beginning of Quaternary.