The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(...To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed ...We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.展开更多
Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under...Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under the load and the inertial effects at every instant. As a matter of fact, the actual measure of the pose error is often replaced by an uncertainty measure. However, a side effect of the existence of clearances is that they can cause sudden changes in the posture of the mechanism as a motion is performed. Such discontinuities in the position produce task defects and impacts. In this work a tool to determine the pose error due to clearances is presented together with a discontinuity analysis. In addition, effects of mass distribution and inertial effects on such discontinuities are expounded, taking a 3-PRS robot as example.展开更多
Simulation and interpretation of marine controlled-source electromagnetic(CSEM) data often approximate the transmitter source as an ideal horizontal electric dipole(HED) and assume that the receivers are located on a ...Simulation and interpretation of marine controlled-source electromagnetic(CSEM) data often approximate the transmitter source as an ideal horizontal electric dipole(HED) and assume that the receivers are located on a flat seabed.Actually,however,the transmitter dipole source will be rotated,tilted and deviated from the survey profile due to ocean currents.And free-fall receivers may be also rotated to some arbitrary horizontal orientation and located on sloping seafloor.In this paper,we investigate the effects of uncertainties in the transmitter tilt,transmitter rotation and transmitter deviation from the survey profile as well as in the receiver's location and orientation on marine CSEM data.The model study shows that the uncertainties of all position and orientation parameters of both the transmitter and receivers can propagate into observed data uncertainties,but to a different extent.In interpreting marine data,field data uncertainties caused by the position and orientation uncertainties of both the transmitter and receivers need to be taken into account.展开更多
TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to th...TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.展开更多
Design of watertight subdivision inherently involves its optimization with the objective to increase the index "A" above its minimum required value. In view of a big popularity of probabilistic search methods such a...Design of watertight subdivision inherently involves its optimization with the objective to increase the index "A" above its minimum required value. In view of a big popularity of probabilistic search methods such as genetic algorithms, this task is intrinsically time consuming. Thus, even when an optimal subdivision layout (i.e. topology) is determined, it can be found that the optimal bulkhead positions can be a great challenge time-wise, often forcing designers to satisfy with suboptimal solutions. The fundamental reason why this happens is that the nature of the optimized function (e.g., index "A" as a function of bulkhead positions) is unknown and hence it has no effect upon the choice of optimization strategy, which therefore reflects subjective but not factual preferences. In this paper we study the nature of functional dependency between the subdivision index and bulkhead positions, as a simplest case, and indicate pertinent optimization strategies that consequently reduce the optimization time. In our study we use a cruise ship model to demonstrate the application results of our findings.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
As the strict limitation of primary structure in traditional force method and displacement method in indeterminate analysis may lead to complicated high-order linear equations, a breakthrough of the limitation, i.e., ...As the strict limitation of primary structure in traditional force method and displacement method in indeterminate analysis may lead to complicated high-order linear equations, a breakthrough of the limitation, i.e., the application of irregular force method and irregular displacement method, would be introduced in this paper to ease the difficulty of hand computations. By using hyperstatic primary structures and partly chained primary structures, the primary structures of force method and displacement method are reformed, and the order of the system is decreased. The technique is explained through examples. The significance of the new method is summarized.展开更多
A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parame...A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.展开更多
The span of coordinate time series affects the determination of an optimal noise model. We analyzed position data recorded for 10 continuous Global Positioning System (GPS) sites from 1998.0 to mid-2009 on the Austr...The span of coordinate time series affects the determination of an optimal noise model. We analyzed position data recorded for 10 continuous Global Positioning System (GPS) sites from 1998.0 to mid-2009 on the Australian Plate to estimate the best noise model and thereafter obtain the true uncertainties of the velocity, employing the maximum likelihood estimation (MLE) method. MLE was employed to analyze the data in four ways. In the first two analyses, the noise was assumed to be a combination of flicker noise and white noise for the raw time series and spatially filtered time series. In the final two analyses, the spectral indices and amplitudes were simultaneously estimated for a power law noise plus white noise model for the raw time series and spatially filtered time series. We conclude that the noise model of GPS time series in Australia can be best described as the combination of flicker noise and white noise. Velocity uncertainties fall below -0.2 mm/yr when the time span exceeds -9.5 years. A comparison of noise amplitudes and maximum likelihood estimation values between the raw and spatially filtered time series suggests that traditional spatial filtering to remove common-mode errors might not be applicable to the raw time series of this region.展开更多
Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(C...Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties.展开更多
The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analy...The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analysis of 13 C isotope labeled graphene samples. We found that the phonon scattering is affected by the isotopic carbon atom as a point defect. Based on the experiment results, the Klemens-Callaway model and uncertainty principle were used to obtain the mean free path of the G and D phonons. The results agree with the thermal conductivity measurement by non-contact optical method and with other theoretical calculations.展开更多
We study uncertainty and certainty relations for two successive measurements of two-dimensional observables. Uncertainties in successive measurement are considered within the following two scenarios. In the first scen...We study uncertainty and certainty relations for two successive measurements of two-dimensional observables. Uncertainties in successive measurement are considered within the following two scenarios. In the first scenario, the second measurement is performed on the quantum state generated affer the first measurement with completely erased information. In the second scenario, the second measurement is performed on the post-first- tioned on the actual measurement outcome. Induced entropies. For two successive projective t state condiquantum uncertainties are characterized by means of the Tsallis t of a qubit, we obtain minimal and maximal values of related entropic measures of induced uncertainties. Some conclusions found in the second scenario are extended to arbitrary finite dimensionality. In particular, a connection with mutual unbiasedness is emphasized.展开更多
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金The National Natural Science Foundation of China(No.61273236)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637),China Scholarship Council
文摘To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
文摘We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.
文摘Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under the load and the inertial effects at every instant. As a matter of fact, the actual measure of the pose error is often replaced by an uncertainty measure. However, a side effect of the existence of clearances is that they can cause sudden changes in the posture of the mechanism as a motion is performed. Such discontinuities in the position produce task defects and impacts. In this work a tool to determine the pose error due to clearances is presented together with a discontinuity analysis. In addition, effects of mass distribution and inertial effects on such discontinuities are expounded, taking a 3-PRS robot as example.
基金funded by the National Natural Science Foundation of China (41130420)the State High-Tech Development Plan of China (2012AA09A20101)
文摘Simulation and interpretation of marine controlled-source electromagnetic(CSEM) data often approximate the transmitter source as an ideal horizontal electric dipole(HED) and assume that the receivers are located on a flat seabed.Actually,however,the transmitter dipole source will be rotated,tilted and deviated from the survey profile due to ocean currents.And free-fall receivers may be also rotated to some arbitrary horizontal orientation and located on sloping seafloor.In this paper,we investigate the effects of uncertainties in the transmitter tilt,transmitter rotation and transmitter deviation from the survey profile as well as in the receiver's location and orientation on marine CSEM data.The model study shows that the uncertainties of all position and orientation parameters of both the transmitter and receivers can propagate into observed data uncertainties,but to a different extent.In interpreting marine data,field data uncertainties caused by the position and orientation uncertainties of both the transmitter and receivers need to be taken into account.
基金Under the auspices of the National Natural Science Foundation of China (No. 40171015)
文摘TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.
文摘Design of watertight subdivision inherently involves its optimization with the objective to increase the index "A" above its minimum required value. In view of a big popularity of probabilistic search methods such as genetic algorithms, this task is intrinsically time consuming. Thus, even when an optimal subdivision layout (i.e. topology) is determined, it can be found that the optimal bulkhead positions can be a great challenge time-wise, often forcing designers to satisfy with suboptimal solutions. The fundamental reason why this happens is that the nature of the optimized function (e.g., index "A" as a function of bulkhead positions) is unknown and hence it has no effect upon the choice of optimization strategy, which therefore reflects subjective but not factual preferences. In this paper we study the nature of functional dependency between the subdivision index and bulkhead positions, as a simplest case, and indicate pertinent optimization strategies that consequently reduce the optimization time. In our study we use a cruise ship model to demonstrate the application results of our findings.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.
文摘As the strict limitation of primary structure in traditional force method and displacement method in indeterminate analysis may lead to complicated high-order linear equations, a breakthrough of the limitation, i.e., the application of irregular force method and irregular displacement method, would be introduced in this paper to ease the difficulty of hand computations. By using hyperstatic primary structures and partly chained primary structures, the primary structures of force method and displacement method are reformed, and the order of the system is decreased. The technique is explained through examples. The significance of the new method is summarized.
基金supported by Ministry of Knowledge and Economy,Koreathe ITRC(Information Technology Research Center)support program(ⅡTA-2009-C1090-0902-0004)
文摘A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41304007,41074022)the Chinese Universities Scientific Fund(Grant No.121103)+1 种基金the Surveying and Mapping Basic Research Program of the National Administration of Surveying,Mapping and Geoinformation(Grant No.11-02-02)the China Scholarship Council and College of Science of the University of Nevada,Reno
文摘The span of coordinate time series affects the determination of an optimal noise model. We analyzed position data recorded for 10 continuous Global Positioning System (GPS) sites from 1998.0 to mid-2009 on the Australian Plate to estimate the best noise model and thereafter obtain the true uncertainties of the velocity, employing the maximum likelihood estimation (MLE) method. MLE was employed to analyze the data in four ways. In the first two analyses, the noise was assumed to be a combination of flicker noise and white noise for the raw time series and spatially filtered time series. In the final two analyses, the spectral indices and amplitudes were simultaneously estimated for a power law noise plus white noise model for the raw time series and spatially filtered time series. We conclude that the noise model of GPS time series in Australia can be best described as the combination of flicker noise and white noise. Velocity uncertainties fall below -0.2 mm/yr when the time span exceeds -9.5 years. A comparison of noise amplitudes and maximum likelihood estimation values between the raw and spatially filtered time series suggests that traditional spatial filtering to remove common-mode errors might not be applicable to the raw time series of this region.
基金supported by Hanyang University(Grant No.HY-2014)
文摘Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties.
基金supported by the National Natural Science Foundation of China(Grant Nos.91123009 and 10975115)the Natural Science Foundation of Fujian Province of China(Grant No.2012J06002)
文摘The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analysis of 13 C isotope labeled graphene samples. We found that the phonon scattering is affected by the isotopic carbon atom as a point defect. Based on the experiment results, the Klemens-Callaway model and uncertainty principle were used to obtain the mean free path of the G and D phonons. The results agree with the thermal conductivity measurement by non-contact optical method and with other theoretical calculations.
文摘We study uncertainty and certainty relations for two successive measurements of two-dimensional observables. Uncertainties in successive measurement are considered within the following two scenarios. In the first scenario, the second measurement is performed on the quantum state generated affer the first measurement with completely erased information. In the second scenario, the second measurement is performed on the post-first- tioned on the actual measurement outcome. Induced entropies. For two successive projective t state condiquantum uncertainties are characterized by means of the Tsallis t of a qubit, we obtain minimal and maximal values of related entropic measures of induced uncertainties. Some conclusions found in the second scenario are extended to arbitrary finite dimensionality. In particular, a connection with mutual unbiasedness is emphasized.