Combining the design of experiments(DOE)and three-dimensional finite element(3D-FE)method,a sequential multiobjectiveoptimization of larger diameter thin-walled(LDTW)Al-alloy tube bending under uncertainties was propo...Combining the design of experiments(DOE)and three-dimensional finite element(3D-FE)method,a sequential multiobjectiveoptimization of larger diameter thin-walled(LDTW)Al-alloy tube bending under uncertainties was proposed andimplemented based on the deterministic design results.Via the fractional factorial design,the significant noise factors are obtained,viz,variations of tube properties,fluctuations of tube geometries and friction.Using the virtual Taguchi’s DOE of inner and outerarrays,considering three major defects,the robust optimization of LDTW Al-alloy tube bending is achieved and validated.For thebending tools,the robust design of mandrel diameter was conducted under the fluctuations of tube properties,friction and tubegeometry.For the processing parameters,considering the variations of friction,material properties and manufacture deviation ofmandrel,the robust design of mandrel extension length and boosting ratio is realized.展开更多
In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and en...In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.展开更多
基金Project(51275415) supported by the National Natural Science Foundation of ChinaProject(51522509) supported by the National Science Fund for Excellent Young Scholars,China
文摘Combining the design of experiments(DOE)and three-dimensional finite element(3D-FE)method,a sequential multiobjectiveoptimization of larger diameter thin-walled(LDTW)Al-alloy tube bending under uncertainties was proposed andimplemented based on the deterministic design results.Via the fractional factorial design,the significant noise factors are obtained,viz,variations of tube properties,fluctuations of tube geometries and friction.Using the virtual Taguchi’s DOE of inner and outerarrays,considering three major defects,the robust optimization of LDTW Al-alloy tube bending is achieved and validated.For thebending tools,the robust design of mandrel diameter was conducted under the fluctuations of tube properties,friction and tubegeometry.For the processing parameters,considering the variations of friction,material properties and manufacture deviation ofmandrel,the robust design of mandrel extension length and boosting ratio is realized.
基金Supported by Dalian University of Technology, the US National Science Foundation (No.CTS-0407494) and the Texas Advanced Technology program (No.003581-0044-2003)
文摘In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.