为充分发挥主动配电网提高电力系统灵活性和消纳可再生能源的潜力,该文提出一种计及综合能源系统(integrated energy system,IES)动态特性的主动配电网与输电网协同机组组合模型。一方面引入电-气-热综合能源系统实现多能耦合,使主动配...为充分发挥主动配电网提高电力系统灵活性和消纳可再生能源的潜力,该文提出一种计及综合能源系统(integrated energy system,IES)动态特性的主动配电网与输电网协同机组组合模型。一方面引入电-气-热综合能源系统实现多能耦合,使主动配电网对多能互补的支持融入到输电网的调度优化中;另一方面,为提高调度决策的灵活性,将天然气网与热网的动态特性纳入到输配协同机组组合模型中。基于此模型,根据电-气-热IES多能耦合特性和输-配物理互联特征构建协同优化框架。以联络线交换功率作为耦合变量,将其等效为虚拟能源站,采用目标级联分析法对所提模型进行解耦,从而得到一个独立的输电网优化问题和多个主动配电网局部优化问题。为提高计算效率,采用增量分段方法处理天然气Weymouth方程的非凸性,将该文模型转换为混合整数线性规划问题,保证迭代过程的收敛性,进一步降低计算负担。以T6D2系统和T118D10系统为例,验证所提模型和方法的有效性。展开更多
Determining the joint probability distribution of correlated non-normal geotechnical parameters based on incomplete statistical data is a challenging problem.This paper proposes a Gaussian copula-based method for mode...Determining the joint probability distribution of correlated non-normal geotechnical parameters based on incomplete statistical data is a challenging problem.This paper proposes a Gaussian copula-based method for modelling the joint probability distribution of bivariate uncertain data.First,the concepts of Pearson and Kendall correlation coefficients are presented,and the copula theory is briefly introduced.Thereafter,a Pearson method and a Kendall method are developed to determine the copula parameter underlying Gaussian copula.Second,these two methods are compared in computational efficiency,applicability,and capability of fitting data.Finally,four load-test datasets of load-displacement curves of piles are used to illustrate the proposed method.The results indicate that the proposed Gaussian copula-based method can not only characterize the correlation between geotechnical parameters,but also construct the joint probability distribution function of correlated non-normal geotechnical parameters in a more general way.It can serve as a general tool to construct the joint probability distribution of correlated geotechnical parameters based on incomplete data.The Gaussian copula using the Kendall method is superior to that using the Pearson method,which should be recommended for modelling and simulating the joint probability distribution of correlated geotechnical parameters.There exists a strong negative correlation between the two parameters underlying load-displacement curves.Neglecting such correlation will not capture the scatter in the measured load-displacement curves.These results substantially extend the application of the copula theory to multivariate simulation in geotechnical engineering.展开更多
A reliability assessment method of fatigue life based on the long-term monitoring data is developed for welded details in steel box girder,and the application research is presented with examples of welded rib-to-deck ...A reliability assessment method of fatigue life based on the long-term monitoring data is developed for welded details in steel box girder,and the application research is presented with examples of welded rib-to-deck details in Runyang Bridges. Firstly the fatigue damage limit-state function is established based on S-N curves and Miner's rule,and the probability distribution characteristics of the coefficients in the function are discussed in detail. The uncertainties in fatigue loading effects are mainly studied based on long-term monitoring data. In the traditional studies,only the uncertainty of equivalent stress range is considered in fatigue reliability assessment. However,stress cycle number is also treated as a random variable in this paper because we know traffic flow every day differs in a thousand ways. Then the optimization method is employed to calculate the fatigue reliability. After studying the changing law of the reliability indices with time and the effect of the randomness of stress cycle number on reliability,the effect of the traffic growth on the reliability is studied. This study shows that the uncertainty in the fatigue life of the welded details can be well studied based on structural health monitoring,so it is necessary to carry out long-term strain monitoring of the welded details for accurate fatigue reliability assessment during the whole service period.展开更多
Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shea...Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil.展开更多
This paper is concerned with the problem of robust H∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduce...This paper is concerned with the problem of robust H∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduced-order and zeroth-order robust H∞ filters on the basis of a recently published parameter-dependent Lyapunov stability result. Sufficient conditions for the existence of such filters are formulated in terms of linear matrix inequalities, upon which admissible filters can be obtained from convex optimization problems. The proposed methodology has been shown, via a numerical example, to be much less conservative than previous filter design methods in the quadratic framework.展开更多
文摘为充分发挥主动配电网提高电力系统灵活性和消纳可再生能源的潜力,该文提出一种计及综合能源系统(integrated energy system,IES)动态特性的主动配电网与输电网协同机组组合模型。一方面引入电-气-热综合能源系统实现多能耦合,使主动配电网对多能互补的支持融入到输电网的调度优化中;另一方面,为提高调度决策的灵活性,将天然气网与热网的动态特性纳入到输配协同机组组合模型中。基于此模型,根据电-气-热IES多能耦合特性和输-配物理互联特征构建协同优化框架。以联络线交换功率作为耦合变量,将其等效为虚拟能源站,采用目标级联分析法对所提模型进行解耦,从而得到一个独立的输电网优化问题和多个主动配电网局部优化问题。为提高计算效率,采用增量分段方法处理天然气Weymouth方程的非凸性,将该文模型转换为混合整数线性规划问题,保证迭代过程的收敛性,进一步降低计算负担。以T6D2系统和T118D10系统为例,验证所提模型和方法的有效性。
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB013506)the National Natural Science Foundation of China (Grant Nos. 51028901 and 50839004)
文摘Determining the joint probability distribution of correlated non-normal geotechnical parameters based on incomplete statistical data is a challenging problem.This paper proposes a Gaussian copula-based method for modelling the joint probability distribution of bivariate uncertain data.First,the concepts of Pearson and Kendall correlation coefficients are presented,and the copula theory is briefly introduced.Thereafter,a Pearson method and a Kendall method are developed to determine the copula parameter underlying Gaussian copula.Second,these two methods are compared in computational efficiency,applicability,and capability of fitting data.Finally,four load-test datasets of load-displacement curves of piles are used to illustrate the proposed method.The results indicate that the proposed Gaussian copula-based method can not only characterize the correlation between geotechnical parameters,but also construct the joint probability distribution function of correlated non-normal geotechnical parameters in a more general way.It can serve as a general tool to construct the joint probability distribution of correlated geotechnical parameters based on incomplete data.The Gaussian copula using the Kendall method is superior to that using the Pearson method,which should be recommended for modelling and simulating the joint probability distribution of correlated geotechnical parameters.There exists a strong negative correlation between the two parameters underlying load-displacement curves.Neglecting such correlation will not capture the scatter in the measured load-displacement curves.These results substantially extend the application of the copula theory to multivariate simulation in geotechnical engineering.
基金supported by the National Natural Science Foundation of China (Grant Nos.50725828,50808041)Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ0923)Teaching and Research Foundation for Excellent Young Teacher of Southeast University
文摘A reliability assessment method of fatigue life based on the long-term monitoring data is developed for welded details in steel box girder,and the application research is presented with examples of welded rib-to-deck details in Runyang Bridges. Firstly the fatigue damage limit-state function is established based on S-N curves and Miner's rule,and the probability distribution characteristics of the coefficients in the function are discussed in detail. The uncertainties in fatigue loading effects are mainly studied based on long-term monitoring data. In the traditional studies,only the uncertainty of equivalent stress range is considered in fatigue reliability assessment. However,stress cycle number is also treated as a random variable in this paper because we know traffic flow every day differs in a thousand ways. Then the optimization method is employed to calculate the fatigue reliability. After studying the changing law of the reliability indices with time and the effect of the randomness of stress cycle number on reliability,the effect of the traffic growth on the reliability is studied. This study shows that the uncertainty in the fatigue life of the welded details can be well studied based on structural health monitoring,so it is necessary to carry out long-term strain monitoring of the welded details for accurate fatigue reliability assessment during the whole service period.
基金Project supported by the National Natural Science Foundation of China(No.51878160)the National Key Research and Development Program of China(No.2017YFC00703408)the Research Funding from China Huaneng Group Co.Ltd.(No.HNKJ19-H17)。
文摘Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil.
文摘This paper is concerned with the problem of robust H∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduced-order and zeroth-order robust H∞ filters on the basis of a recently published parameter-dependent Lyapunov stability result. Sufficient conditions for the existence of such filters are formulated in terms of linear matrix inequalities, upon which admissible filters can be obtained from convex optimization problems. The proposed methodology has been shown, via a numerical example, to be much less conservative than previous filter design methods in the quadratic framework.