The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and constru...This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and construction of an appropriate type of Lyapunov functional. The stability criteria derived from this method have less conservatism than some existing ones. Numerical examples are given to illustrate the effectiveness of the orooosed method.展开更多
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
基金supported by National Nature Science Foundation of China under Grant Nos.60174032,61004019the Key Project of Science&Technology Commission of Shanghai under Grant No.10JC140500
文摘This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and construction of an appropriate type of Lyapunov functional. The stability criteria derived from this method have less conservatism than some existing ones. Numerical examples are given to illustrate the effectiveness of the orooosed method.