A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller desig...A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.展开更多
Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the firs...Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.展开更多
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-ti...A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.展开更多
This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controlle...This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.展开更多
Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce...Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.展开更多
This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMI...This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.展开更多
Reomtly, Coordinate bieasuring Machines (CMMs) are widely used to measure roundness errors. Roundness is calculated from a large number of points collected from the profiles of the parts. According to the Guide to t...Reomtly, Coordinate bieasuring Machines (CMMs) are widely used to measure roundness errors. Roundness is calculated from a large number of points collected from the profiles of the parts. According to the Guide to the Expression of Uncertainty in Measta- meat (GUM), all measurement results must have a stated uncertainty associated the titan. However, no CMMs give the uncertainty value of the roundness, because no suitable measrement uncertainty calculation procedure exists. In the case of roundness raeasurement in coordinate metrology, this paper suggests the algorithms for the calculation of the measurement uncertainty of the roudness deviation based on the two mainly used association criteria, LSC and MZC. The calculation of the sensitivity coefficients for the uncertainty calculatiion can be done by autnatic differentiation, in order to avoid introducing additional emars by the traditional difference quotient approxima- tions. The proposed methods are exact and need input data only as the nrasured coordinates of the data points and their associated un- certainties.展开更多
In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to...In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of...Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of uncertain parameters, all the errors of system variable synchronization and of uncertain param- eter track are asymptotically stable. The theoretical analysis and the numerical simulations prove the efffectiveness of the oroDosed method.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
文摘A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.
文摘Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.
基金Projects(51205253,11272205)supported by the National Natural Science Foundation of ChinaProject(2012AA7052005)supported by the National High Technology Research and Development Program of China
文摘A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.
文摘This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.
基金Projects(51708558,51878673,U1734208,52078485,U1934217,U1934209)supported by the National Natural Science Foundation of ChinaProject(2020JJ5740)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(KF2020-03)supported by the Key Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,ChinaProject(2020-Special-02)supported by the Science and Technology Research and Development Program of China Railway Group Limited。
文摘Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.
基金supported by the National Natural Science Foundation of China(No.50705002,50627501)
文摘Reomtly, Coordinate bieasuring Machines (CMMs) are widely used to measure roundness errors. Roundness is calculated from a large number of points collected from the profiles of the parts. According to the Guide to the Expression of Uncertainty in Measta- meat (GUM), all measurement results must have a stated uncertainty associated the titan. However, no CMMs give the uncertainty value of the roundness, because no suitable measrement uncertainty calculation procedure exists. In the case of roundness raeasurement in coordinate metrology, this paper suggests the algorithms for the calculation of the measurement uncertainty of the roudness deviation based on the two mainly used association criteria, LSC and MZC. The calculation of the sensitivity coefficients for the uncertainty calculatiion can be done by autnatic differentiation, in order to avoid introducing additional emars by the traditional difference quotient approxima- tions. The proposed methods are exact and need input data only as the nrasured coordinates of the data points and their associated un- certainties.
基金Supported by the National Natural Science Foundation of China(61290324)
文摘In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
基金Supported by the National Natural Science Foundation of China(60374037 ,60574036) ,and the Specialized Research Foundationfor the Doctoral Program of Higher Education of China(20050055013) .
文摘Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of uncertain parameters, all the errors of system variable synchronization and of uncertain param- eter track are asymptotically stable. The theoretical analysis and the numerical simulations prove the efffectiveness of the oroDosed method.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].