Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method,...Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method, which is based on the AASHTO pavement performance model, treats predictor variables as random variables with certain probability distributions and obtains the distribution of future PSI through the method of Monte-Carlo simulation. A computer program PERFORM using Monte Carlo simulation is developed to implement the numerical computation. Simulation results based on pavement and traffic parameters show that traffic, surface layer material property, and initial pavement performance are the most significant factors affecting pavement performance. Once the distribution of future PSI is determined, statistics such as the mean and the variance of future PSI are readily available.展开更多
TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to th...TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.展开更多
Autoimmune hepatitis (AIH) is a disease of unknown etiology,its hallmark being ongoing hepatic inflammation.By its very nature,it is a chronic condition,although increasingly,we are becoming aware of patients with acu...Autoimmune hepatitis (AIH) is a disease of unknown etiology,its hallmark being ongoing hepatic inflammation.By its very nature,it is a chronic condition,although increasingly,we are becoming aware of patients with acute presentations,some of whom may have liver failure.There are very limited published data on patients with AIH with liver failure at initial diagnosis,which consist mostly of small retrospective studies.As a consequence,the clinical features and optimal management of this cohort remain poorly defined.A subset of patients with AIH who present with liver failure do respond to corticosteroids,but for the vast majority,an urgent liver transplantation may offer the only hope of long-term survival.At present,there is uncertainty on how best to stratify such a cohort into responders and non-responders to corticosteroids as soon as possible after hospitalization,thus optimizing their management.This editorial attempts to answer some of the unresolved issues relating to management of patients with AIH with liver failure at initial presentation.However,it must be emphasized that,at present,this editorial is based mostly on small retrospective studies,and it is an understatement that multicenter prospective studies are urgently needed to address this important clinical issue.展开更多
Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen...Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.展开更多
The decrease of wind velocity (wake losses) in downstream area of wind turbine is generally quantified using wake models. The overall estimated power of wind farm varies according to reliability of wake model used, ...The decrease of wind velocity (wake losses) in downstream area of wind turbine is generally quantified using wake models. The overall estimated power of wind farm varies according to reliability of wake model used, however it's unclear which model is most appropriate and able to give a high performance in predicting wind velocity deficit. In this subject, a qualification of three analytical wake models (Jensen, lshihara and Frandsen) based on three principal criteria is presented in this paper: (i) the parsimony which characterizes the inverse of model complexity, (ii) the accuracy of estimation in which wake model is compared with the experimental data and (iii) imprecision that is related to assumptions and uncertainty on the value of variables considered in each model. This qualitative analysis shows the inability of wake models to predict wind velocity deficit due to the big uncertainty of variables considered and it sensitivity to wind farm characteristic.展开更多
As non-renewable natural resources, rare minerals' are extensively used as important raw materials in strategic emerging industries. As global consumption continues to increase over recent years, international compet...As non-renewable natural resources, rare minerals' are extensively used as important raw materials in strategic emerging industries. As global consumption continues to increase over recent years, international competition in the area of rare mineral minerals has been escalating. On the basis' of the identification of 22 rare mineral resources of six categories and analysis of their applications in strategic emerging industries, this paper has adopted a three-factor analytical framework and designed nine indicators from the three dimensions of supply risks, environmental impacts and economic impacts of restricted supply to conduct a quantitative evaluation of the strategic significance of rare mineral resources. The result indicates that the strategic significance of platinum-group metals is the highest and the strategic significance of cesium is the lowest. In order to further increase the reliability of evaluation results, this paper has employed the Monte Carlo simulation for uncertainty analysis'. Simulation result demonstrates that after the impacts" of individual indicators have been taken into account, the results' of this paper's evaluation of 22 rare mineral resources remain valid. Given the growing significance of rare mineral resources to strategic emerging industries, China should formulate a national strategy on rare mineral resources', strive to inerease the supply security of key raw materials for strategic emerging industries and achieve the sustainable development and utilization of rare mineral resources for national security of natural resources.展开更多
This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time dela...This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.展开更多
A reliability assessment method of fatigue life based on the long-term monitoring data is developed for welded details in steel box girder,and the application research is presented with examples of welded rib-to-deck ...A reliability assessment method of fatigue life based on the long-term monitoring data is developed for welded details in steel box girder,and the application research is presented with examples of welded rib-to-deck details in Runyang Bridges. Firstly the fatigue damage limit-state function is established based on S-N curves and Miner's rule,and the probability distribution characteristics of the coefficients in the function are discussed in detail. The uncertainties in fatigue loading effects are mainly studied based on long-term monitoring data. In the traditional studies,only the uncertainty of equivalent stress range is considered in fatigue reliability assessment. However,stress cycle number is also treated as a random variable in this paper because we know traffic flow every day differs in a thousand ways. Then the optimization method is employed to calculate the fatigue reliability. After studying the changing law of the reliability indices with time and the effect of the randomness of stress cycle number on reliability,the effect of the traffic growth on the reliability is studied. This study shows that the uncertainty in the fatigue life of the welded details can be well studied based on structural health monitoring,so it is necessary to carry out long-term strain monitoring of the welded details for accurate fatigue reliability assessment during the whole service period.展开更多
Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shea...Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil.展开更多
This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain para...This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain parameters, this paper treats uncertainties as non-probability intervals. Based on the iterative process of classical effective independence method, the proposed study considers the eliminating steps with uncertain cases. Therefore, this method with Fisher information matrix is extended to interval numbers, which could conform to actual engineering. As long as we know the bounds of uncertainties, the interval Fisher information matrix could be obtained conveniently by interval analysis technology. Moreover, due to the definition and calculation of the interval relationship, the possibilities of eliminating candidate sensors in each iterative process and the final layout of sensor placement are both presented in this paper. Finally, two numerical examples, including a five-storey shear structure and a truss structure are proposed respectively in this paper. Compared with Monte Carlo simulation, both of them can indicate the veracity of the interval effective independence method.展开更多
The method of processing of the non-stationary casual processes with the use of nonparametric methods of the theory of decisions is considered. The use of such methods is admissible in telemetry systems in need of pro...The method of processing of the non-stationary casual processes with the use of nonparametric methods of the theory of decisions is considered. The use of such methods is admissible in telemetry systems in need of processing at real rate of time of fast-changing casual processes in the conditions of aprioristic uncertainty about probabilistic properties of measured process.展开更多
Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping...Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping and replicability in error modeling.As area classes are rarely completely separable in empirically realized discriminant space,where class inseparabil-ity becomes more complicated for change categorization,we seek to quantify uncertainty in area classes(and change classes)due to measurement errors and semantic discrepancy separately and hence assess their relative margins objectively.Experiments using real datasets were carried out,and a Bayesian method was used to obtain change maps.We found that there are large differences be-tween uncertainty statistics referring to data classes and information classes.Therefore,uncertainty characterization in change categorization should be based on discriminant modeling of measurement errors and semantic mismatch analysis,enabling quanti-fication of uncertainty due to partially random measurement errors,and systematic categorical discrepancies,respectively.展开更多
In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue in...In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.展开更多
A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a ...A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a method for detection and quantification of the meshing characteristics of the harmonic drive gear based on computer vision. First, an experimental set-up that integrates a high speed camera system with a lighting system is developed, and the image processing is adopted to extract and polish the tooth profiles of the meshed teeth pairs in each acquired video sequence. Next, a physical-mathematical model is established to determine the relative positions of the selected tooth pair in the process of the gear engagement, and the combined standard uncertainty is utilized to evaluate the accuracy of the calculated kinematics parameters. Last, the kinematics analysis of the gear engagement under the ultra-low speed condition is performed with our method and previous method, and the influence of the input rotational speed on the results is examined. The results validate the effectiveness of our method, and indicate that the conventional method is not available in the future friction analysis. It is also shown that the engaging-in phase is approximately a uniform motion process, the engaging-out phase is a variable motion process, and these characteristics remain unchanged with the variation of the input rotational speed. Our method affords the ability to understand the frictional mechanism on the meshed contact surfaces of the harmonic drive gear, and also allows for the dynamic monitoring of the meshing properties.展开更多
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation(No. PRF-44468-G9 )+2 种基金Chang Jiang Scholars Program,the Fok Ying-Tong Education Foundation (No. 114024 )the Natural Science Foundation of Jiangsu Province(No. SBK200910046 )the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method, which is based on the AASHTO pavement performance model, treats predictor variables as random variables with certain probability distributions and obtains the distribution of future PSI through the method of Monte-Carlo simulation. A computer program PERFORM using Monte Carlo simulation is developed to implement the numerical computation. Simulation results based on pavement and traffic parameters show that traffic, surface layer material property, and initial pavement performance are the most significant factors affecting pavement performance. Once the distribution of future PSI is determined, statistics such as the mean and the variance of future PSI are readily available.
基金Under the auspices of the National Natural Science Foundation of China (No. 40171015)
文摘TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.
文摘Autoimmune hepatitis (AIH) is a disease of unknown etiology,its hallmark being ongoing hepatic inflammation.By its very nature,it is a chronic condition,although increasingly,we are becoming aware of patients with acute presentations,some of whom may have liver failure.There are very limited published data on patients with AIH with liver failure at initial diagnosis,which consist mostly of small retrospective studies.As a consequence,the clinical features and optimal management of this cohort remain poorly defined.A subset of patients with AIH who present with liver failure do respond to corticosteroids,but for the vast majority,an urgent liver transplantation may offer the only hope of long-term survival.At present,there is uncertainty on how best to stratify such a cohort into responders and non-responders to corticosteroids as soon as possible after hospitalization,thus optimizing their management.This editorial attempts to answer some of the unresolved issues relating to management of patients with AIH with liver failure at initial presentation.However,it must be emphasized that,at present,this editorial is based mostly on small retrospective studies,and it is an understatement that multicenter prospective studies are urgently needed to address this important clinical issue.
基金Project(51318010402)supported by General Armament Department Pre-Research Program of China
文摘Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.
文摘The decrease of wind velocity (wake losses) in downstream area of wind turbine is generally quantified using wake models. The overall estimated power of wind farm varies according to reliability of wake model used, however it's unclear which model is most appropriate and able to give a high performance in predicting wind velocity deficit. In this subject, a qualification of three analytical wake models (Jensen, lshihara and Frandsen) based on three principal criteria is presented in this paper: (i) the parsimony which characterizes the inverse of model complexity, (ii) the accuracy of estimation in which wake model is compared with the experimental data and (iii) imprecision that is related to assumptions and uncertainty on the value of variables considered in each model. This qualitative analysis shows the inability of wake models to predict wind velocity deficit due to the big uncertainty of variables considered and it sensitivity to wind farm characteristic.
基金Innovation Project of Chinese Academy of Social Sciences(Grant No.SKGJCX2013-04)Key Program of National Social Sciences Foundation of China(Grant No.13&ZD169)Young Scientists Fund of National Natural Science Foundation of China(Grant No.71203232)
文摘As non-renewable natural resources, rare minerals' are extensively used as important raw materials in strategic emerging industries. As global consumption continues to increase over recent years, international competition in the area of rare mineral minerals has been escalating. On the basis' of the identification of 22 rare mineral resources of six categories and analysis of their applications in strategic emerging industries, this paper has adopted a three-factor analytical framework and designed nine indicators from the three dimensions of supply risks, environmental impacts and economic impacts of restricted supply to conduct a quantitative evaluation of the strategic significance of rare mineral resources. The result indicates that the strategic significance of platinum-group metals is the highest and the strategic significance of cesium is the lowest. In order to further increase the reliability of evaluation results, this paper has employed the Monte Carlo simulation for uncertainty analysis'. Simulation result demonstrates that after the impacts" of individual indicators have been taken into account, the results' of this paper's evaluation of 22 rare mineral resources remain valid. Given the growing significance of rare mineral resources to strategic emerging industries, China should formulate a national strategy on rare mineral resources', strive to inerease the supply security of key raw materials for strategic emerging industries and achieve the sustainable development and utilization of rare mineral resources for national security of natural resources.
基金National Natural Science Foundation of China (No.60674088)
文摘This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.
基金supported by the National Natural Science Foundation of China (Grant Nos.50725828,50808041)Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ0923)Teaching and Research Foundation for Excellent Young Teacher of Southeast University
文摘A reliability assessment method of fatigue life based on the long-term monitoring data is developed for welded details in steel box girder,and the application research is presented with examples of welded rib-to-deck details in Runyang Bridges. Firstly the fatigue damage limit-state function is established based on S-N curves and Miner's rule,and the probability distribution characteristics of the coefficients in the function are discussed in detail. The uncertainties in fatigue loading effects are mainly studied based on long-term monitoring data. In the traditional studies,only the uncertainty of equivalent stress range is considered in fatigue reliability assessment. However,stress cycle number is also treated as a random variable in this paper because we know traffic flow every day differs in a thousand ways. Then the optimization method is employed to calculate the fatigue reliability. After studying the changing law of the reliability indices with time and the effect of the randomness of stress cycle number on reliability,the effect of the traffic growth on the reliability is studied. This study shows that the uncertainty in the fatigue life of the welded details can be well studied based on structural health monitoring,so it is necessary to carry out long-term strain monitoring of the welded details for accurate fatigue reliability assessment during the whole service period.
基金Project supported by the National Natural Science Foundation of China(No.51878160)the National Key Research and Development Program of China(No.2017YFC00703408)the Research Funding from China Huaneng Group Co.Ltd.(No.HNKJ19-H17)。
文摘Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil.
基金supported by the National Natural Science Foundation of China(Grant No.11502278)
文摘This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain parameters, this paper treats uncertainties as non-probability intervals. Based on the iterative process of classical effective independence method, the proposed study considers the eliminating steps with uncertain cases. Therefore, this method with Fisher information matrix is extended to interval numbers, which could conform to actual engineering. As long as we know the bounds of uncertainties, the interval Fisher information matrix could be obtained conveniently by interval analysis technology. Moreover, due to the definition and calculation of the interval relationship, the possibilities of eliminating candidate sensors in each iterative process and the final layout of sensor placement are both presented in this paper. Finally, two numerical examples, including a five-storey shear structure and a truss structure are proposed respectively in this paper. Compared with Monte Carlo simulation, both of them can indicate the veracity of the interval effective independence method.
文摘The method of processing of the non-stationary casual processes with the use of nonparametric methods of the theory of decisions is considered. The use of such methods is admissible in telemetry systems in need of processing at real rate of time of fast-changing casual processes in the conditions of aprioristic uncertainty about probabilistic properties of measured process.
基金Supported by the National Natural Science Foundation of China (No.41171346,No. 41071286)the Fundamental Research Funds for the Central Universities (No. 20102130103000005)the National 973 Program of China (No. 2007CB714402‐5)
文摘Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping and replicability in error modeling.As area classes are rarely completely separable in empirically realized discriminant space,where class inseparabil-ity becomes more complicated for change categorization,we seek to quantify uncertainty in area classes(and change classes)due to measurement errors and semantic discrepancy separately and hence assess their relative margins objectively.Experiments using real datasets were carried out,and a Bayesian method was used to obtain change maps.We found that there are large differences be-tween uncertainty statistics referring to data classes and information classes.Therefore,uncertainty characterization in change categorization should be based on discriminant modeling of measurement errors and semantic mismatch analysis,enabling quanti-fication of uncertainty due to partially random measurement errors,and systematic categorical discrepancies,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.90816024)Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)111 Project(Grant No.B07009)
文摘In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.
基金supported by the National Natural Science Foundation of China(Grant No.11272171)the Beijing Natural Science Foundation(Grant No.3132030)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a method for detection and quantification of the meshing characteristics of the harmonic drive gear based on computer vision. First, an experimental set-up that integrates a high speed camera system with a lighting system is developed, and the image processing is adopted to extract and polish the tooth profiles of the meshed teeth pairs in each acquired video sequence. Next, a physical-mathematical model is established to determine the relative positions of the selected tooth pair in the process of the gear engagement, and the combined standard uncertainty is utilized to evaluate the accuracy of the calculated kinematics parameters. Last, the kinematics analysis of the gear engagement under the ultra-low speed condition is performed with our method and previous method, and the influence of the input rotational speed on the results is examined. The results validate the effectiveness of our method, and indicate that the conventional method is not available in the future friction analysis. It is also shown that the engaging-in phase is approximately a uniform motion process, the engaging-out phase is a variable motion process, and these characteristics remain unchanged with the variation of the input rotational speed. Our method affords the ability to understand the frictional mechanism on the meshed contact surfaces of the harmonic drive gear, and also allows for the dynamic monitoring of the meshing properties.