According to the uncertainties in the results and the wide diversity of how to approach the subject, a new concept for energy is proposed: Energy is an exchange between two different concentrations, the concentration...According to the uncertainties in the results and the wide diversity of how to approach the subject, a new concept for energy is proposed: Energy is an exchange between two different concentrations, the concentration of time in space outside what we call matter and the concentrated phase of time in matter space which is the matter itself. The concept of motion for energy is replaced by time-space interactions with time taken as solid matter. Motion enhances the exchange between the mass and its surrounding time in space, annihilation and creation are special forms of this exchange. During the motion of a mass, it increases as a result of this dissolution. Time concentration in Fock space is responsible for the collision phenomena in physics. In this paper, a new mathematical operator (the equal operator) is introduced.展开更多
A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account t...A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account the model-based (i.e., epistemic) uncertainty and its influence on the computed ground motion parameters. Hazard computations have been performed using a grid of sites with a space of 0.05 degrees. Two different computation methodologies have been adopted: the standard approach based on the definition of appropriate seismogenic sources and the zone-free approach, which overcomes the ambiguities related with the definition of the seismic sources solely reflecting the characteristics of the earthquake catalogue. A comprehensive and updated earthquake catalogue for Jamaica has been compiled for the years 1551-2010 and new empirical relationships amongst magnitudes Mze-Ms and Mw-mb have been developed for the region. Uniform hazard spectra and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions and five return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s, and 5% of critical damping. The spectral accelerations have been calculated to allow the definition of seismic hazard in Jamaica according to the International Building Code 2012. The disaggregation analysis for Kingston Metropolitan Area suggests that the magnitude-distance pair that contributes most to the hazard corresponds to events with M 7.8 and M 7.0 in the Enriquillo Plantain Garden Fault and the Jamaican Faults at a distance of 28 km and 18 km for short and long period structures respectively corresponding to 2,475 years return period. However, for long period structures, a substantial contribution is found for a M 8.2 at a distance of 198 km in the Oriente Fault Zone.展开更多
A navigation method based on the partially observable markov decision process (POMDP) for smart wheelchairs in uncertain environments is presented in this paper. The design key factors for the navigation system of a...A navigation method based on the partially observable markov decision process (POMDP) for smart wheelchairs in uncertain environments is presented in this paper. The design key factors for the navigation system of a smart wheelchair are discussed. A kinematics model of the smart wheelchair is given, and the model and principle of POMDP are introduced. In order to respond in uncertain local environments, a novel navigation methodology based on POMDP using the sensors perception and the user's joystick input is presented. The state space, the action set, the observations and the sensor fusion of the navigation method are given in detail, and the optimal policy of the POMDP model is proposed. Experimental results demonstrate the feasibility of this navigation method. Analysis is also conducted to investigate performance evaluation, advantages of the approach and potential generalization of this paper.展开更多
Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject...Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.展开更多
文摘According to the uncertainties in the results and the wide diversity of how to approach the subject, a new concept for energy is proposed: Energy is an exchange between two different concentrations, the concentration of time in space outside what we call matter and the concentrated phase of time in matter space which is the matter itself. The concept of motion for energy is replaced by time-space interactions with time taken as solid matter. Motion enhances the exchange between the mass and its surrounding time in space, annihilation and creation are special forms of this exchange. During the motion of a mass, it increases as a result of this dissolution. Time concentration in Fock space is responsible for the collision phenomena in physics. In this paper, a new mathematical operator (the equal operator) is introduced.
文摘A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account the model-based (i.e., epistemic) uncertainty and its influence on the computed ground motion parameters. Hazard computations have been performed using a grid of sites with a space of 0.05 degrees. Two different computation methodologies have been adopted: the standard approach based on the definition of appropriate seismogenic sources and the zone-free approach, which overcomes the ambiguities related with the definition of the seismic sources solely reflecting the characteristics of the earthquake catalogue. A comprehensive and updated earthquake catalogue for Jamaica has been compiled for the years 1551-2010 and new empirical relationships amongst magnitudes Mze-Ms and Mw-mb have been developed for the region. Uniform hazard spectra and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions and five return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s, and 5% of critical damping. The spectral accelerations have been calculated to allow the definition of seismic hazard in Jamaica according to the International Building Code 2012. The disaggregation analysis for Kingston Metropolitan Area suggests that the magnitude-distance pair that contributes most to the hazard corresponds to events with M 7.8 and M 7.0 in the Enriquillo Plantain Garden Fault and the Jamaican Faults at a distance of 28 km and 18 km for short and long period structures respectively corresponding to 2,475 years return period. However, for long period structures, a substantial contribution is found for a M 8.2 at a distance of 198 km in the Oriente Fault Zone.
文摘A navigation method based on the partially observable markov decision process (POMDP) for smart wheelchairs in uncertain environments is presented in this paper. The design key factors for the navigation system of a smart wheelchair are discussed. A kinematics model of the smart wheelchair is given, and the model and principle of POMDP are introduced. In order to respond in uncertain local environments, a novel navigation methodology based on POMDP using the sensors perception and the user's joystick input is presented. The state space, the action set, the observations and the sensor fusion of the navigation method are given in detail, and the optimal policy of the POMDP model is proposed. Experimental results demonstrate the feasibility of this navigation method. Analysis is also conducted to investigate performance evaluation, advantages of the approach and potential generalization of this paper.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872017, 90816024 and 10876100)111 Project (Grant No. B07009)
文摘Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.