To fully analyze emission characteristics of VOCs (Volatile Organic Compounds) from automobile coating industry in Chongqing city, related enterprises in the city were investigated in detail. The results show that t...To fully analyze emission characteristics of VOCs (Volatile Organic Compounds) from automobile coating industry in Chongqing city, related enterprises in the city were investigated in detail. The results show that the emission of VOCs from the automobile industry in Chongqing city was approximately 20,000 t in 2012, and the contribution rate of automobile coating was 83%. Most VOCs discharged from automobile coating industry were mainly from the use of coatings, diluents, curing agents and other materials containing VOCs. During the process of automobile coating, VOCs were mainly produced during the processes of spraying and drying. Besides, VOCs are partly produced during the processes of mixing paint, gluing, waxing and repairing. The major ingredients of VOCs discharged during the process of automobile coating were methylbenzene, dimethylbenzene, trimethylbenzene, cumene, ethyl acetate, butyl alcohol, n-butyl alcohol, isobutyl alcohol, formaldehyde, butanone, acetone, cyclohexanone and methyl ethyl ketone. Besides, the ingredients of naphtha and aromatic hydrocarbon in VOCs need to be determined. The maximum OFP (Ozone Formation Potential) of the above pollutants by the typical enterprises was 900-1,300 mg/m^3. The production of SOA (Secondary Organic Aerosol) was 3,636-11,073 t/a, which didn’t include the contribution of aldehydes, ketones, ethers and esters to SOA. This research could provide scientific reference for the establishment of emission standard, control technology and management methods of VOCs from automobile coating industry that accord with economic and social development in Chongqing city.展开更多
The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large s...The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.展开更多
An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and ...An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.展开更多
文摘To fully analyze emission characteristics of VOCs (Volatile Organic Compounds) from automobile coating industry in Chongqing city, related enterprises in the city were investigated in detail. The results show that the emission of VOCs from the automobile industry in Chongqing city was approximately 20,000 t in 2012, and the contribution rate of automobile coating was 83%. Most VOCs discharged from automobile coating industry were mainly from the use of coatings, diluents, curing agents and other materials containing VOCs. During the process of automobile coating, VOCs were mainly produced during the processes of spraying and drying. Besides, VOCs are partly produced during the processes of mixing paint, gluing, waxing and repairing. The major ingredients of VOCs discharged during the process of automobile coating were methylbenzene, dimethylbenzene, trimethylbenzene, cumene, ethyl acetate, butyl alcohol, n-butyl alcohol, isobutyl alcohol, formaldehyde, butanone, acetone, cyclohexanone and methyl ethyl ketone. Besides, the ingredients of naphtha and aromatic hydrocarbon in VOCs need to be determined. The maximum OFP (Ozone Formation Potential) of the above pollutants by the typical enterprises was 900-1,300 mg/m^3. The production of SOA (Secondary Organic Aerosol) was 3,636-11,073 t/a, which didn’t include the contribution of aldehydes, ketones, ethers and esters to SOA. This research could provide scientific reference for the establishment of emission standard, control technology and management methods of VOCs from automobile coating industry that accord with economic and social development in Chongqing city.
文摘The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.
文摘An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.