In this paper, the nonlinear optimization problems with inequality constraints are discussed. Combining the ideas of the strongly sub-feasible directions method and the s-generalized projection technique, a new algori...In this paper, the nonlinear optimization problems with inequality constraints are discussed. Combining the ideas of the strongly sub-feasible directions method and the s-generalized projection technique, a new algorithm starting with an arbitrary initial iteration point for the discussed problems is presented. At each iteration, the search direction is generated by a new s-generalized projection explicit formula, and the step length is yielded by a new Armijo line search. Under some necessary assumptions, not only the algorithm possesses global and strong convergence, but also the iterative points always get into the feasible set after finite iterations. Finally, some preliminary numerical results are reported.展开更多
We consider a class of mathematical programs governed by parameterized quasi-variational inequalities(QVI).The necessary optimality conditions for the optimization problem with QVI constraints are reformulated as a sy...We consider a class of mathematical programs governed by parameterized quasi-variational inequalities(QVI).The necessary optimality conditions for the optimization problem with QVI constraints are reformulated as a system of nonsmooth equations under the linear independence constraint qualification and the strict slackness condition.A set of second order sufficient conditions for the mathematical program with parameterized QVI constraints are proposed,which are demonstrated to be sufficient for the second order growth condition.The strongly BD-regularity for the nonsmooth system of equations at a solution point is demonstrated under the second order sufficient conditions.The smoothing Newton method in Qi-Sun-Zhou [2000] is employed to solve this nonsmooth system and the quadratic convergence is guaranteed by the strongly BD-regularity.Numerical experiments are reported to show that the smoothing Newton method is very effective for solving this class of optimization problems.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.71061002 and 10771040the Project supported by Guangxi Science Foundation under Grant No.0832052Science Foundation of Guangxi Education Department under Grant No.200911MS202
文摘In this paper, the nonlinear optimization problems with inequality constraints are discussed. Combining the ideas of the strongly sub-feasible directions method and the s-generalized projection technique, a new algorithm starting with an arbitrary initial iteration point for the discussed problems is presented. At each iteration, the search direction is generated by a new s-generalized projection explicit formula, and the step length is yielded by a new Armijo line search. Under some necessary assumptions, not only the algorithm possesses global and strong convergence, but also the iterative points always get into the feasible set after finite iterations. Finally, some preliminary numerical results are reported.
基金supported by National Natural Science Foundation of China (Grant No.11071029)the Fundamental Research Funds for the Central Universities
文摘We consider a class of mathematical programs governed by parameterized quasi-variational inequalities(QVI).The necessary optimality conditions for the optimization problem with QVI constraints are reformulated as a system of nonsmooth equations under the linear independence constraint qualification and the strict slackness condition.A set of second order sufficient conditions for the mathematical program with parameterized QVI constraints are proposed,which are demonstrated to be sufficient for the second order growth condition.The strongly BD-regularity for the nonsmooth system of equations at a solution point is demonstrated under the second order sufficient conditions.The smoothing Newton method in Qi-Sun-Zhou [2000] is employed to solve this nonsmooth system and the quadratic convergence is guaranteed by the strongly BD-regularity.Numerical experiments are reported to show that the smoothing Newton method is very effective for solving this class of optimization problems.