期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
新息图法电力系统不良数据检测与辨识 被引量:1
1
作者 张永超 黄彦全 +1 位作者 宋廷珍 穆亚东 《四川电力技术》 2009年第3期14-15,47,共3页
不良数据检测和辨识是电力系统状态估计的重要组成部分;所采用的新息图方法,结合动态和静态两方面理论,将具有具体物理意义的数据(新息向量),转化为虚拟假设条件下的等价表示,并利用基本的电路理论,达到检测和辨识坏数据以及拓扑错误的... 不良数据检测和辨识是电力系统状态估计的重要组成部分;所采用的新息图方法,结合动态和静态两方面理论,将具有具体物理意义的数据(新息向量),转化为虚拟假设条件下的等价表示,并利用基本的电路理论,达到检测和辨识坏数据以及拓扑错误的目的。该方法具有模型简单、快速准确等优点。以IEEE-14节点系统算例,初步验证了所提方法的有效性。 展开更多
关键词 不良数据检测与辨识 新息图 拓扑错误
下载PDF
数据挖掘在电力负荷坏数据智能辨识与修正中的应用 被引量:11
2
作者 张昀 周湶 +3 位作者 任海军 孙才新 伍科 马小敏 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期69-74,共6页
负荷历史数据由于各种原因含有一定的坏数据,在进行高精度的电力负荷预测或系统分析前必须对历史数据进行预处理。本文采用基于加权核函数的模糊C均值聚类的改进算法—WKFCM,以核诱导距离的简单两项和替代欧氏距离作为聚类目标公式的不... 负荷历史数据由于各种原因含有一定的坏数据,在进行高精度的电力负荷预测或系统分析前必须对历史数据进行预处理。本文采用基于加权核函数的模糊C均值聚类的改进算法—WKFCM,以核诱导距离的简单两项和替代欧氏距离作为聚类目标公式的不相似性测度函数,减小了计算复杂度。对数据进行聚类之后,采用收敛速度快、模式分类能力强的超圆神经元网络数据辨识模型,并对识别出的坏数据进行修正,实例证明本文提出的数据处理模型具有较好的效果。 展开更多
关键词 模糊C均值聚类 超圆神经网络 不良数据检测与辨识 电力系统负荷预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部