Microstructure instabilities of the fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy were investigated by SEM and TEM after long-term thermal cycling(500 and 1000 thermal cycles) at 900 °C. Two major categories of ...Microstructure instabilities of the fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy were investigated by SEM and TEM after long-term thermal cycling(500 and 1000 thermal cycles) at 900 °C. Two major categories of microstructure instability were produced in the alloy after the thermal cycling: 1) The discontinuous coarsening implies that grain boundary migrations are inclined to occur in the Al-segregation region after the long-term thermal cycling, especially after 1000 thermal cycles. Al-segregation can be reduced during the process of long-term thermal cycling as a result of element diffusion; 2) The α2 lamellae become thinner and are broken after 1000 thermal cycles caused by the dissolution of α2 lamellae through phase transformation of α2→γ. The γ grains nucleate within the α2 lamellae or(α2+γ) lamellae in a random direction.展开更多
The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(C...The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(CP)phases near the reaction front(RF)are replaced by the discontinuous precipitation(DP)phases at the early aging stage.In DP regions,the elliptical phases coarsen obviously with the increase of aging time,which results in a slightly slow reduction of the intracrystalline hardness of DP regions.In CP regions,some small plate phases reprecipitate simultaneously with the growth of the initial precipitates,which contributes to a slight increase in the intracrystalline hardness in CP regions at the later aging stage.The aging hardening of DP regions is faster and stronger than that of CP regions.However,the age strengthening of CP regions not only compensates for the overaging softening of DP regions but also improves the strength of the alloy.展开更多
基金Project(2011CB605500)supported by National Basic Research Program of ChinaProject(51171015)supported by National Natural Science Foundation of China+2 种基金Project(2012M520166)supported by China Postdoctoral Science FoundationProject(2012Z-06)supported by State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(FRF-TP-12-164A)supported by Fundamental Research Funds for the Central Universities of China
文摘Microstructure instabilities of the fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy were investigated by SEM and TEM after long-term thermal cycling(500 and 1000 thermal cycles) at 900 °C. Two major categories of microstructure instability were produced in the alloy after the thermal cycling: 1) The discontinuous coarsening implies that grain boundary migrations are inclined to occur in the Al-segregation region after the long-term thermal cycling, especially after 1000 thermal cycles. Al-segregation can be reduced during the process of long-term thermal cycling as a result of element diffusion; 2) The α2 lamellae become thinner and are broken after 1000 thermal cycles caused by the dissolution of α2 lamellae through phase transformation of α2→γ. The γ grains nucleate within the α2 lamellae or(α2+γ) lamellae in a random direction.
基金financially supported by the Natural Science Foundation of Hunan Province, China (No. 2018JJ2503)the Postgraduate Independent Exploration and Innovation Project of Central South University, China (No. 1053320171111)
文摘The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(CP)phases near the reaction front(RF)are replaced by the discontinuous precipitation(DP)phases at the early aging stage.In DP regions,the elliptical phases coarsen obviously with the increase of aging time,which results in a slightly slow reduction of the intracrystalline hardness of DP regions.In CP regions,some small plate phases reprecipitate simultaneously with the growth of the initial precipitates,which contributes to a slight increase in the intracrystalline hardness in CP regions at the later aging stage.The aging hardening of DP regions is faster and stronger than that of CP regions.However,the age strengthening of CP regions not only compensates for the overaging softening of DP regions but also improves the strength of the alloy.