CVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspe...CVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspect on diamond substrate surfaces obtained with MgO electrode was fabricated by using back-sputtering from MgO electrode. The RMS roughness of diamond substrate surfaces obtained with MgO electrode is higher than those obtained with stainless steel electrode. The secondary electron emission coefficient in Ne gas of the diamond obtained with MgO electrode was twice that obtained with the stainless steel electrode.展开更多
An investigation using Electrical Resistance Tomography (ERT) was carried out in order to characterize gas-liquid mixing in an agitated vessel. The experimental work was carried out in a 400 mm diameter agitated ves...An investigation using Electrical Resistance Tomography (ERT) was carried out in order to characterize gas-liquid mixing in an agitated vessel. The experimental work was carried out in a 400 mm diameter agitated vessel that was fitted with four planes, 16 stainless steel electrodes. Agitation was carried out using the Lightnin Labmaster and Rushton turbine while conductivity data acquisition was carried out using the ITS P2000 ERT system. A Mathlab code was developed to construct a surface plot for gas hold-up from the ERT data. Various gas dispersion conditions such as flooded, loaded and fully dispersed were successfully characterized using the ERT technique.展开更多
Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer perfor...Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load(i.e. 60 W) and with the LHP being inclined 60 to the horizontal plane, the total thermal resistance is lowered to be ~0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90 C.展开更多
文摘CVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspect on diamond substrate surfaces obtained with MgO electrode was fabricated by using back-sputtering from MgO electrode. The RMS roughness of diamond substrate surfaces obtained with MgO electrode is higher than those obtained with stainless steel electrode. The secondary electron emission coefficient in Ne gas of the diamond obtained with MgO electrode was twice that obtained with the stainless steel electrode.
文摘An investigation using Electrical Resistance Tomography (ERT) was carried out in order to characterize gas-liquid mixing in an agitated vessel. The experimental work was carried out in a 400 mm diameter agitated vessel that was fitted with four planes, 16 stainless steel electrodes. Agitation was carried out using the Lightnin Labmaster and Rushton turbine while conductivity data acquisition was carried out using the ITS P2000 ERT system. A Mathlab code was developed to construct a surface plot for gas hold-up from the ERT data. Various gas dispersion conditions such as flooded, loaded and fully dispersed were successfully characterized using the ERT technique.
基金supported by the Guangdong Science and Technology Project(2012A080304002)the CAS Key Laboratory of Renew-able Energy Foundation(y207j7)+2 种基金the Zhuhai Science and Technology Project(2012D0501990019)the Guangzhou Science and Technology Project(2013J4300001)the CAS"100 Talents"Program(FJ)
文摘Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load(i.e. 60 W) and with the LHP being inclined 60 to the horizontal plane, the total thermal resistance is lowered to be ~0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90 C.