期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
船用铝合金-钛-不锈钢复合过渡接头焊接试验研究 被引量:3
1
作者 王东涛 刘金涛 +1 位作者 李军 任江毅 《材料开发与应用》 CAS 2019年第6期74-78,共5页
通过焊后无损检测、界面结合强度检测、组织观察对铝合金-钛-不锈钢复合过渡接头焊接工艺试验进行研究。结果表明,铝合金-钛-不锈钢过渡接头焊后组织和性能均符合相关技术规定,为铝合金-钛-不锈钢复合过渡接头工程应用提供一定参考。
关键词 合金--不锈钢 复合过渡接头 焊接
原文传递
Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer 被引量:10
2
作者 赵东升 闫久春 +1 位作者 刘玉君 纪卓尚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2839-2844,共6页
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici... The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer. 展开更多
关键词 hot roll bonding titanium alloy stainless steel NIOBIUM
下载PDF
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
3
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
下载PDF
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet 被引量:9
4
作者 王廷 张秉刚 +2 位作者 陈国庆 冯吉才 唐奇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1829-1834,共6页
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy... Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched. 展开更多
关键词 Ti-15-3 titanium alloy 304 stainless steel electron beam welding interrnetallics layer mechanical properties
下载PDF
Scope for improved properties of dissimilar joints of ferrous and non-ferrous metals 被引量:1
5
作者 Gopinath THIRUNAVUKARASU Subrata CHATTERJEE Sukumar KUNDU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1517-1529,共13页
Dissimilar joints(DSJs)of ferrous and non-ferrous metals have huge technological importance in the frontiers of newdesigns in new machineries and improved design of conventional systems.This investigation was undertak... Dissimilar joints(DSJs)of ferrous and non-ferrous metals have huge technological importance in the frontiers of newdesigns in new machineries and improved design of conventional systems.This investigation was undertaken to improve mechanicalproperties of joints of two dissimilar metals:one is Ti-based and the other is Fe-based.DSJs were processed using bonding pressurefrom1to9MPa in step of2MPa at750°C for60min.Properties of the DSJs of these two metals using different mechanisms andmethods were compared with the present research for verification.Experimental results from the diffusion bonding mechanism forjoining the dissimilar metals validated the improvement in properties.Superior mechanical properties of dissimilar-metals joints wereachieved mainly due to the third non-ferrous metallic foil,Ni of^200-?m thickness,which avoided the formation of brittleFe-Ti-based intermetallics in the diffusion zone.DSJs processed are able to achieve maximum strength of^560MPa along withsubstantial ductility of^11.9%,which is the best ever reported in the literatures so far.Work hardening effect was detected in theDSJs when the bonding was processed at5MPa and above.Bulging ratio of the non-ferrous metal(Ti-based)was much higher thanthat of the ferrous metal(SS)of the DSJs processed.SEM analysis was carried out to know the details of reaction zone,while XRDwas carried out to support the SEM results.Reasons for change in mechanical,physical,and fracture properties of the DSJs with theprocess parameter variations were clarified. 展开更多
关键词 diffusion welding titanium alloy stainless steel nickel INTERLAYER tensile strength FRACTOGRAPH
下载PDF
异种金属的钎焊 被引量:3
6
作者 庄鸿寿 《焊接》 北大核心 2009年第2期22-25,共4页
连接异种金属时,由于材料物理性能的不同以及连接时发生的冶金反应,比较困难。钎焊是最实用的方法。阐述了常用的异种金属组合:铝-铜、铝-不锈钢、铝-钛、不锈钢-钛合金的钎焊技术,同时列出了这些接头的图片。
关键词 异种金属 - -不锈钢 - 不锈钢-钛合金 钎焊
下载PDF
Influences of different filler metals on electron beam welding of titanium alloy to stainless steel 被引量:10
7
作者 王廷 张秉刚 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期108-114,共7页
Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning ... Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa. 展开更多
关键词 titanium alloy stainless steel filler metal electron beam welding mechanical property
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部