The disturbance due to mechanical and thermal sources in saturated porous media with incompressible fluid for two-dimensional axi-symmetric problem is investigated.The Laplace and Hankel transforms techniques are used...The disturbance due to mechanical and thermal sources in saturated porous media with incompressible fluid for two-dimensional axi-symmetric problem is investigated.The Laplace and Hankel transforms techniques are used to investigate the problem.The concentrated source and source over circular region have been taken to show the utility of the approach.The transformed components of displacement,stress and pore pressure are obtained.Numerical inversion techniques are used to obtain the resulting quantities in the physical domain and the effect of porosity is shown on the resulting quantities.All the field quantities are found to be sensitive towards the porosity parameters.It is observed that porosity parameters have both increasing and decreasing effect on the numerical values of the physical quantities.Also the values of the physical quantities are affected by the different boundaries.A special case of interest is also deduced.展开更多
The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alt...The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alternative approach for theoretically dealing with chemical dissolution front (CDF) propagation in fluid-saturated carbonate rocks. Note that the CDF is represented by the porosity front in this study. In this new approach, the porosity, pore-fluid velocity and acid concentration are directly used as independent variables. To illustrate how to use the present new approach, an aeidization dissolution system (ADS) consisting of carbonate rocks, which belongs to one of the many general chemical dissolution systems (CDSs), is taken as an application example. When the acid dissolution capacity (ADC) number (that is defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid) approaches zero, the present new approach can be used to obtain analytical solutions for the stable ADS. However, if the ADC number is a nonzero finite number, then numerical solutions can be only obtained for the ADS, especially when the ADS is in an unstable state. The related theoretical results have demonstrated that: (1) When the ADS is in a stable state and in the case of the ADC number approaching zero, the present new approach is mathematically equivalent to the previous approach, in which the porosity, pore-fluid pressure and acid concentration are used as independent variables. However, when the ADS is in an unstable state, the use of the present new approach leads to a free parameter that needs to be determined by some other ways. (2) The existence of a non-step-type dissolution front within a transient region should at least satisfy that none of the ADC number, injected acid velocity and reciprocal of the dissolution reaction rate is equal to zero in the stable ADS.展开更多
The classical planar Richtmyer–Meshkov instability(RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order,and then according to definition ...The classical planar Richtmyer–Meshkov instability(RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order,and then according to definition of nonlinear saturation amplitude(NSA) in Rayleigh–Taylor instability(RTI),the NSA in planar RMI is obtained explicitly.It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface,while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength.Without marginal influence of the initial amplitude,the NSA increases linearly with wavelength.The NSA normalized by the wavelength in planar RMI is about 0.11,larger than that corresponding to RTI.展开更多
文摘The disturbance due to mechanical and thermal sources in saturated porous media with incompressible fluid for two-dimensional axi-symmetric problem is investigated.The Laplace and Hankel transforms techniques are used to investigate the problem.The concentrated source and source over circular region have been taken to show the utility of the approach.The transformed components of displacement,stress and pore pressure are obtained.Numerical inversion techniques are used to obtain the resulting quantities in the physical domain and the effect of porosity is shown on the resulting quantities.All the field quantities are found to be sensitive towards the porosity parameters.It is observed that porosity parameters have both increasing and decreasing effect on the numerical values of the physical quantities.Also the values of the physical quantities are affected by the different boundaries.A special case of interest is also deduced.
基金supported by the National Natural Science Foundation of China(Grant No.11272359)
文摘The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alternative approach for theoretically dealing with chemical dissolution front (CDF) propagation in fluid-saturated carbonate rocks. Note that the CDF is represented by the porosity front in this study. In this new approach, the porosity, pore-fluid velocity and acid concentration are directly used as independent variables. To illustrate how to use the present new approach, an aeidization dissolution system (ADS) consisting of carbonate rocks, which belongs to one of the many general chemical dissolution systems (CDSs), is taken as an application example. When the acid dissolution capacity (ADC) number (that is defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid) approaches zero, the present new approach can be used to obtain analytical solutions for the stable ADS. However, if the ADC number is a nonzero finite number, then numerical solutions can be only obtained for the ADS, especially when the ADS is in an unstable state. The related theoretical results have demonstrated that: (1) When the ADS is in a stable state and in the case of the ADC number approaching zero, the present new approach is mathematically equivalent to the previous approach, in which the porosity, pore-fluid pressure and acid concentration are used as independent variables. However, when the ADS is in an unstable state, the use of the present new approach leads to a free parameter that needs to be determined by some other ways. (2) The existence of a non-step-type dissolution front within a transient region should at least satisfy that none of the ADC number, injected acid velocity and reciprocal of the dissolution reaction rate is equal to zero in the stable ADS.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11472278 and 11372330the Scientific Research Foundation of Education Department of Sichuan Province under Grant No.15ZA0296+1 种基金the Scientific Research Foundation of Mianyang Normal University under Grant Nos.QD2014A009 and 2014A02the National High-Tech ICF Committee
文摘The classical planar Richtmyer–Meshkov instability(RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order,and then according to definition of nonlinear saturation amplitude(NSA) in Rayleigh–Taylor instability(RTI),the NSA in planar RMI is obtained explicitly.It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface,while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength.Without marginal influence of the initial amplitude,the NSA increases linearly with wavelength.The NSA normalized by the wavelength in planar RMI is about 0.11,larger than that corresponding to RTI.