-
题名基于兴趣和专业度建模的CQA专家发现方法
- 1
-
-
作者
丁邱
严馨
刘艳超
徐广义
邓忠莹
-
机构
昆明理工大学信息工程与自动化学院
昆明理工大学云南省人工智能重点实验室
湖北工程学院信息技术中心
云南南天电子信息产业股份有限公司
-
出处
《贵州大学学报(自然科学版)》
2023年第5期72-79,95,共9页
-
基金
国家自然科学基金资助项目(61562049,61462055)。
-
文摘
现有问答社区专家发现方法通过学习用户解答的问题序列单向信息建模用户兴趣,忽略了用户兴趣的波动性,对于解答过较少问题的用户建模准确度将受到影响,此外,未考虑历史回答与问题的语义相关性对评估用户表现的作用。论文提出基于兴趣和专业度建模的CQA专家发现方法,首先,使用BERT4Rec学习用户近期解答的问题序列双向信息得到近期动态兴趣表示;其次,构建用户社交网络,使用DeepWalk算法学习网络结构特征,得到用户长期兴趣表示;再次,构建用户专业度评估网络,依据用户回答与问题的语义相关性及反馈信息计算权重,对相应问题进行加权,引入注意力机制,重点关注用户在与新问题相近问题上的表现,得到用户专业度表示;最后,综合用户近期动态兴趣、长期兴趣和专业度表示与新问题进行匹配打分,为新问题找出有意愿接受邀请并能提供优质回答的用户。实验表明,该方法取得了较好表现,较基线方法在英语、3D打印和天涯问答数据集的MRR评价指标上分别提升了5.2%、2.7%、16.1%。
-
关键词
问答社区
专家发现
动态兴趣建模
社交网络
专业度建模
-
Keywords
CQA
expert discovery
dynamic interest modeling
social networking
professional modeling
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-