A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different col...A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.展开更多
The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. T...The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).展开更多
This paper reports on the current state of an ongoing research project which is aimed at implementing intelligent models for hardly predictable hazard scenarios identification in construction sites. As any programmati...This paper reports on the current state of an ongoing research project which is aimed at implementing intelligent models for hardly predictable hazard scenarios identification in construction sites. As any programmatic actions cannot deal with the unpredictable nature of many risk dynamics, an attempt to improve the current approach for safety management in the construction industry will be presented in this paper. To this aim, the features offered by Bayesian networks have been exploited. The present research has led to the definition of a probabilistic model using elicitation techniques from subjective knowledge. This model, which might be meant as a reliable knowledge map about accident dynamics, showed that a relevant part of occurrences fall in the "hardly predictable hazards" category, which cannot be warded off by programmatic safety measures. Hence, more effort turned out to be needed in order to manage those hardly predictable hazardous scenarios. Consequently, further developments of this research project will focus on a real time monitoring system for the identification of unpredictable hazardous events in construction.展开更多
文摘A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.
文摘The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).
文摘This paper reports on the current state of an ongoing research project which is aimed at implementing intelligent models for hardly predictable hazard scenarios identification in construction sites. As any programmatic actions cannot deal with the unpredictable nature of many risk dynamics, an attempt to improve the current approach for safety management in the construction industry will be presented in this paper. To this aim, the features offered by Bayesian networks have been exploited. The present research has led to the definition of a probabilistic model using elicitation techniques from subjective knowledge. This model, which might be meant as a reliable knowledge map about accident dynamics, showed that a relevant part of occurrences fall in the "hardly predictable hazards" category, which cannot be warded off by programmatic safety measures. Hence, more effort turned out to be needed in order to manage those hardly predictable hazardous scenarios. Consequently, further developments of this research project will focus on a real time monitoring system for the identification of unpredictable hazardous events in construction.