This paper presents the total dose radiation performance of 0.8μm SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage curren...This paper presents the total dose radiation performance of 0.8μm SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage currents of transistors and standby currents of ASIC as functions of the total dose up to 500krad(Si). The experimental results show that the worst case threshold voltage shifts of front channels are less than 320mV for pMOS transistors under off-gate radiation bias at 1Mrad(Si) and less than 120mV for nMOS transistors under on-gate radiation bias. No significant radiation-induced leakage current is observed in transistors to 1Mrad (Si). The standby currents of ASIC are less than the specification of 5μA over the total dose range of 500krad(Si).展开更多
In aluminum electrolytic process, the variables affect the current efficiency and the stability of electrolysis cells. AIF3 addition and aluminum tapping volume are two important factors that affect economic benefits ...In aluminum electrolytic process, the variables affect the current efficiency and the stability of electrolysis cells. AIF3 addition and aluminum tapping volume are two important factors that affect economic benefits of aluminum electrolytic production. Fuzzy logic provides a suitable mechanism to describe the relationship between the process variables and the current efficiency. Fuzzy expert system based on Mamdani fuzzy inference process for aluminum electrolysis was adopted to adjust A1F3 addition and aluminum tapping volume. A novel variable universe approach was applied in the system to solve the problem that different electrolysis cells have different universes of variables. The system was applied to 300 kA aluminum electrolysis cells in a aluminum plant. Experimental results showed that the electrolyte temperature was kept stably between 945 and 955℃, the current efficiency reached 93.5%, and the DC power consumption was 13 000 kW.h per ton aluminum.展开更多
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,...Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.展开更多
An improved on-chip CMOS astable multivibrator is proposed, which overcomes the shortcomings of the traditional one that the signal duty-cycle is depending on model parameters, and generates stable clock signal with d...An improved on-chip CMOS astable multivibrator is proposed, which overcomes the shortcomings of the traditional one that the signal duty-cycle is depending on model parameters, and generates stable clock signal with duty-cycle equaling 50%. The latch-up effect has been prevented on the improved circuit. It is extremely important that all the excellent performances of the improved astable multivibrator have been achieved with a dynamic power consumption equaling its predecessor one. The advantage of the structure has been verified by SPICE simulation.展开更多
文摘This paper presents the total dose radiation performance of 0.8μm SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage currents of transistors and standby currents of ASIC as functions of the total dose up to 500krad(Si). The experimental results show that the worst case threshold voltage shifts of front channels are less than 320mV for pMOS transistors under off-gate radiation bias at 1Mrad(Si) and less than 120mV for nMOS transistors under on-gate radiation bias. No significant radiation-induced leakage current is observed in transistors to 1Mrad (Si). The standby currents of ASIC are less than the specification of 5μA over the total dose range of 500krad(Si).
基金Project (2009BAE85B00) supported by the National Key Technology R&D Program of ChinaProject (PHR20100509) supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China
文摘In aluminum electrolytic process, the variables affect the current efficiency and the stability of electrolysis cells. AIF3 addition and aluminum tapping volume are two important factors that affect economic benefits of aluminum electrolytic production. Fuzzy logic provides a suitable mechanism to describe the relationship between the process variables and the current efficiency. Fuzzy expert system based on Mamdani fuzzy inference process for aluminum electrolysis was adopted to adjust A1F3 addition and aluminum tapping volume. A novel variable universe approach was applied in the system to solve the problem that different electrolysis cells have different universes of variables. The system was applied to 300 kA aluminum electrolysis cells in a aluminum plant. Experimental results showed that the electrolyte temperature was kept stably between 945 and 955℃, the current efficiency reached 93.5%, and the DC power consumption was 13 000 kW.h per ton aluminum.
文摘Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.
文摘An improved on-chip CMOS astable multivibrator is proposed, which overcomes the shortcomings of the traditional one that the signal duty-cycle is depending on model parameters, and generates stable clock signal with duty-cycle equaling 50%. The latch-up effect has been prevented on the improved circuit. It is extremely important that all the excellent performances of the improved astable multivibrator have been achieved with a dynamic power consumption equaling its predecessor one. The advantage of the structure has been verified by SPICE simulation.