Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for the...Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene.展开更多
MoVNbTe catalyst has been found to be the most active and selective catalyst in the ammoxidation of propane to ACN, the selective oxidation of propane to acrylic acid and in the oxidative dehydrogenation of ethane to ...MoVNbTe catalyst has been found to be the most active and selective catalyst in the ammoxidation of propane to ACN, the selective oxidation of propane to acrylic acid and in the oxidative dehydrogenation of ethane to ethylene. However, in our previous work, when 0.5 mL of MoVNbTe catalyst prepared using slurry method was tested in the propane ammoxidation to ACN, it only shows 1% conversion of propane with about 55% selectivity to CAN, thus giving only 0.6% yields to ACN. The poor catalyst activity is attributed to insufficient formation of crystalline phases essential for the propane activation process. In an attempt to improve the physicochemical properties of this catalyst, several preparation methods have been used, namely hydrothermal, reflux, changing the solvent and changing the calcinations temperature. The modified catalysts have been characterized using X-Ray Diffraction (XRD) and N2 physisorption (BET). The MoVNbTe catalyst prepared by hydrothermal method shows a remarkable improvement in the formation of crystalline phases.展开更多
文摘Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene.
文摘MoVNbTe catalyst has been found to be the most active and selective catalyst in the ammoxidation of propane to ACN, the selective oxidation of propane to acrylic acid and in the oxidative dehydrogenation of ethane to ethylene. However, in our previous work, when 0.5 mL of MoVNbTe catalyst prepared using slurry method was tested in the propane ammoxidation to ACN, it only shows 1% conversion of propane with about 55% selectivity to CAN, thus giving only 0.6% yields to ACN. The poor catalyst activity is attributed to insufficient formation of crystalline phases essential for the propane activation process. In an attempt to improve the physicochemical properties of this catalyst, several preparation methods have been used, namely hydrothermal, reflux, changing the solvent and changing the calcinations temperature. The modified catalysts have been characterized using X-Ray Diffraction (XRD) and N2 physisorption (BET). The MoVNbTe catalyst prepared by hydrothermal method shows a remarkable improvement in the formation of crystalline phases.