Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyry...Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.展开更多
Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microsco...Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.展开更多
A well-defined amphiphilic centipede-like copolymer of styrene and methacrylic acid (PS-PS-PMAA) was synthesized by the combination of living anionic polymerization and atom transfer radical polymerization (ATRP). The...A well-defined amphiphilic centipede-like copolymer of styrene and methacrylic acid (PS-PS-PMAA) was synthesized by the combination of living anionic polymerization and atom transfer radical polymerization (ATRP). The synthetic approach involves the first coupling reaction of polystyrene (PS) backbone bearing 1,1-diphenylethene (DPE) pendant groups with living polystyryllithium (PSLi), and sequential anionic polymerization of t-butyl methacrylate (tBMA) initiated by resulting 1,1-diphenylmethyl anion, and final hydrolysis of obtained PS-PS-PtBMA. The centipede-like copolymer PS-PS-PMAA was characterized by 1H NMR, IR, GPC, and SLS measurements. The critical micelle concentration (CMC) of PS-PS-PMAA in water was determined by fluorescence probe technique. The self-assembly behavior of PS-PS-PMAA in water-THF mixture was observed by TEM. The results showed that the micellar morphology can be varied, such as vesicle, sphere, and agglomerate, depending on the THF content. These phenomena are worthy of further research in polymer physics field.展开更多
Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with...Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacryloni- trile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuC1/2,2'-bipyridine at 50 ~C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitia- tor is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these am- phiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.展开更多
基金National Natural Science Foundation of China(No.50673071,No.50973079)Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.07KJD540188,No.09KJA540001)
文摘Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.
基金Project(21376271)supported by the National Natural Science Foundation of ChinaProject(2013)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China+2 种基金Projects(CL12129,201310533008)supported by the Undergraduates Innovative Training Foundation of Central South University,ChinaProject(Z12060)supported by the Undergraduate Free Exploration Innovation Foundation of Central South University,ChinaProject(CSUZC2013008)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.
基金support from the National Natural Science Foundation of China (20304005)Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(BS2010CL039)
文摘A well-defined amphiphilic centipede-like copolymer of styrene and methacrylic acid (PS-PS-PMAA) was synthesized by the combination of living anionic polymerization and atom transfer radical polymerization (ATRP). The synthetic approach involves the first coupling reaction of polystyrene (PS) backbone bearing 1,1-diphenylethene (DPE) pendant groups with living polystyryllithium (PSLi), and sequential anionic polymerization of t-butyl methacrylate (tBMA) initiated by resulting 1,1-diphenylmethyl anion, and final hydrolysis of obtained PS-PS-PtBMA. The centipede-like copolymer PS-PS-PMAA was characterized by 1H NMR, IR, GPC, and SLS measurements. The critical micelle concentration (CMC) of PS-PS-PMAA in water was determined by fluorescence probe technique. The self-assembly behavior of PS-PS-PMAA in water-THF mixture was observed by TEM. The results showed that the micellar morphology can be varied, such as vesicle, sphere, and agglomerate, depending on the THF content. These phenomena are worthy of further research in polymer physics field.
基金supported by the National Natural Science Foundation of China (21174124)
文摘Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacryloni- trile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuC1/2,2'-bipyridine at 50 ~C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitia- tor is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these am- phiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.