An unexpected super mei-yu struck in 2020 in the Yangtze-Huaihe River basin,southern Korea,and southern Japan(hereafter referred to as the mei-yu regions),causing many casualties and huge economic losses.The super mei...An unexpected super mei-yu struck in 2020 in the Yangtze-Huaihe River basin,southern Korea,and southern Japan(hereafter referred to as the mei-yu regions),causing many casualties and huge economic losses.The super mei-yu was characterized by a remarkably early onset(around 1 June),late withdrawal(around 1 August),and intense rainfalI during the mei-yu season.The precipitation in the early onset and late withdrawal stages contributed more than half of the total mei-yu-period precipitation over the mei-yu regions in 2020.In this study,the authors explored the dominant remote forcing of the mei-yu early onset and late withdrawal to understand the mechanisms of this super mei-yu.The early onset can mainly be attributed to an early northward-shifted East Asian jet stream(EAJS).The late withdrawal mainly resulted from the stagnant EAJS and the western North Pacific subtropical high(WPSH) during 10 July to 1 August.Specifically,North Atlantic sea surface temperature anomalies(SSTAs) excited a Rossby wave,which was steered by atmospheric anomalies related to the western North Pacific SSTAs,causing the early northward-shifted EAJS and generating an early onset.The record-breaking warm SSTAs over the North Indian Ocean to South China Sea and the reduced sea-ice concentration(SIC) over the Laptev-East Siberian Sea played important roles in causing the stagnant WPSH and EAJS during July,which led to the late withdrawal.Meanwhile,the SIC anomalies may have caused the inhomogeneous rainfall distribution in the mei-yu regions.Furthermore,projection results suggest that the probability of a late mei-yu withdrawal similar to the 2020 case will increase in the future.Finally,potential predictors of an extreme mei-yu are discussed.展开更多
East Asian summer rainfall is affected by both the continental northern East Asian low (NEAL) and the western North Pacific subtropical high (WNPSH) in the lower troposphere. This study investigates the joint effe...East Asian summer rainfall is affected by both the continental northern East Asian low (NEAL) and the western North Pacific subtropical high (WNPSH) in the lower troposphere. This study investigates the joint effect of the two circulation factors on East Asian summer rainfall. It is found that the rainfall in East Asia behaves differently in the years with in-phase and out-of-phase variation between the NEAL and WNPSH. When the NEAL and WNPSH vary in phase, i.e. when they are both stronger, the rainfall anomaly shows a dipole pattern in East Asia and displays opposite changes between north and south of 30°N. When the two circulation factors vary out of phase, the rainfall anomaly is concentrated in the Yangtze River valley.展开更多
The stalagmite δ18O record is known to be associated with the climate, but the specifics of the relationship remain unclear. It may not represent variation in air temperature or precipitation, but instead reflect int...The stalagmite δ18O record is known to be associated with the climate, but the specifics of the relationship remain unclear. It may not represent variation in air temperature or precipitation, but instead reflect integral changes of monsoon circulation, especially water vapor sources(the so-called "circulation effect"). Since large-scale atmospheric-oceanic modes such as the Atlantic Multidecadal Oscillation(AMO), Pacific Decadal Oscillation(PDO), and North Atlantic Oscillation(NAO) exert significant effects on Asian monsoon, in this paper the authors investigate the relationships of the East Asian stalagmite δ18O record with these modes. The last three centuries form the focus of our study, for which the authors use reconstructed as well as instrumental data. Considering the impacts of human activity, our analysis is conducted with respect to two periods—the pre- and post-industrial periods. The results show significant lead-lag connections: a positive correlation peaks when the PDO leads East Asian stalagmite δ18O by 3 years, which is persistent over the past 300 years; while the relationships of the AMO and NAO with the East Asian stalagmite δ18O record show significant differences in the post-industrial relative to the pre-industrial period. This implies that the East Asian stalagmite δ18O record may primarily reflect the PDO signal.展开更多
The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accoun...The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.展开更多
The projected temporal evolution in the interannual variability of East Asian summer rainfall in the 21st century is investigated here,by analyzing the simulated results of 18 coupled models under the 20th century cli...The projected temporal evolution in the interannual variability of East Asian summer rainfall in the 21st century is investigated here,by analyzing the simulated results of 18 coupled models under the 20th century climate experiment and scenario A1B.The multi-model ensemble(MME)mean projects two prominent changes in the interannual variability of East Asian summer rainfall in the 21st century under scenario A1B.The first change occurs around the 2030s,with a small change before and a large increase afterward.The intensity of the interannual variability increases up to approximately 0.53 mm/d in the 2070s,representing an increase of approximately 30% relative to the early 21st century.The second change happens around the 2070s,with a decrease afterward.By the end of the 21st century,the increase is approximately 12% relative to the early 21st century.The interannual variability of two circulation factors,the western North Pacific subtropical high(WNPSH)and the East Asian upper-tropospheric jet(EAJ),are also projected to exhibit two prominent changes around the 2030s and 2070 under scenario A1B,with consistent increases and decreases afterward,respectively.The MME result also projects two prominent changes in the interannual variability of water vapor transported to East Asia at 850 hPa,which occurs separately around the 2040s and 2070s,with a persistent increase and decrease afterward.Meanwhile,the precipitable water interannual variability over East Asia and the western North Pacific is projected to exhibit two prominent enhancements around the 2030s and 2060s and an increase from 0.1 kg/m2 in the early 21st century to 0.5 kg/m2 at the end of the 21st century,implying a continuous intensification in the interannual variability of the potential precipitation.Otherwise,the intensities of the three factors'(except EAJ)interannual variability are all projected to be stronger at the end of the 21st century than that in the early period.These studies indicate that the change of interannual variability of the East Asian summer rainfall is caused by the variability of both the dynamic and thermodynamic variables under scenario A1B.In the early and middle 21st century,both factors lead to an intensified interannual variability of rainfall,whereas the dynamic factors weaken the interannual variability,and the thermodynamic factor intensifies the interannual variability in the late period.展开更多
This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC)....This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.展开更多
基金supported by the National Natural Science Foundation of China [grant number 42088101]the Major Program of the National Natural Science Foundation of China [grant number 41991283]。
文摘An unexpected super mei-yu struck in 2020 in the Yangtze-Huaihe River basin,southern Korea,and southern Japan(hereafter referred to as the mei-yu regions),causing many casualties and huge economic losses.The super mei-yu was characterized by a remarkably early onset(around 1 June),late withdrawal(around 1 August),and intense rainfalI during the mei-yu season.The precipitation in the early onset and late withdrawal stages contributed more than half of the total mei-yu-period precipitation over the mei-yu regions in 2020.In this study,the authors explored the dominant remote forcing of the mei-yu early onset and late withdrawal to understand the mechanisms of this super mei-yu.The early onset can mainly be attributed to an early northward-shifted East Asian jet stream(EAJS).The late withdrawal mainly resulted from the stagnant EAJS and the western North Pacific subtropical high(WPSH) during 10 July to 1 August.Specifically,North Atlantic sea surface temperature anomalies(SSTAs) excited a Rossby wave,which was steered by atmospheric anomalies related to the western North Pacific SSTAs,causing the early northward-shifted EAJS and generating an early onset.The record-breaking warm SSTAs over the North Indian Ocean to South China Sea and the reduced sea-ice concentration(SIC) over the Laptev-East Siberian Sea played important roles in causing the stagnant WPSH and EAJS during July,which led to the late withdrawal.Meanwhile,the SIC anomalies may have caused the inhomogeneous rainfall distribution in the mei-yu regions.Furthermore,projection results suggest that the probability of a late mei-yu withdrawal similar to the 2020 case will increase in the future.Finally,potential predictors of an extreme mei-yu are discussed.
基金supported by the National Natural Science Foundation of China[grant number 41375086]
文摘East Asian summer rainfall is affected by both the continental northern East Asian low (NEAL) and the western North Pacific subtropical high (WNPSH) in the lower troposphere. This study investigates the joint effect of the two circulation factors on East Asian summer rainfall. It is found that the rainfall in East Asia behaves differently in the years with in-phase and out-of-phase variation between the NEAL and WNPSH. When the NEAL and WNPSH vary in phase, i.e. when they are both stronger, the rainfall anomaly shows a dipole pattern in East Asia and displays opposite changes between north and south of 30°N. When the two circulation factors vary out of phase, the rainfall anomaly is concentrated in the Yangtze River valley.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010401)the National Natural Science Foundation of China (Grant No. NSFC41375085)
文摘The stalagmite δ18O record is known to be associated with the climate, but the specifics of the relationship remain unclear. It may not represent variation in air temperature or precipitation, but instead reflect integral changes of monsoon circulation, especially water vapor sources(the so-called "circulation effect"). Since large-scale atmospheric-oceanic modes such as the Atlantic Multidecadal Oscillation(AMO), Pacific Decadal Oscillation(PDO), and North Atlantic Oscillation(NAO) exert significant effects on Asian monsoon, in this paper the authors investigate the relationships of the East Asian stalagmite δ18O record with these modes. The last three centuries form the focus of our study, for which the authors use reconstructed as well as instrumental data. Considering the impacts of human activity, our analysis is conducted with respect to two periods—the pre- and post-industrial periods. The results show significant lead-lag connections: a positive correlation peaks when the PDO leads East Asian stalagmite δ18O by 3 years, which is persistent over the past 300 years; while the relationships of the AMO and NAO with the East Asian stalagmite δ18O record show significant differences in the post-industrial relative to the pre-industrial period. This implies that the East Asian stalagmite δ18O record may primarily reflect the PDO signal.
基金supported by the National Basic Research Program (973 Program, Grant No. 2012CB417203)the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201406001)+1 种基金Strategic Leading Science Projects of the Chinese Academy of Sciences (Grant No. XDA11010402)the National National Science Foundation of China (Grant Nos. 91337110 and 40805038)
文摘The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.
基金supported by Special Scientific Research Fund of Meteorological Public Welfare Profession (Grant No.GYHY200906020)National Basci Research Program of China (Grant No. 2010CB950304)
文摘The projected temporal evolution in the interannual variability of East Asian summer rainfall in the 21st century is investigated here,by analyzing the simulated results of 18 coupled models under the 20th century climate experiment and scenario A1B.The multi-model ensemble(MME)mean projects two prominent changes in the interannual variability of East Asian summer rainfall in the 21st century under scenario A1B.The first change occurs around the 2030s,with a small change before and a large increase afterward.The intensity of the interannual variability increases up to approximately 0.53 mm/d in the 2070s,representing an increase of approximately 30% relative to the early 21st century.The second change happens around the 2070s,with a decrease afterward.By the end of the 21st century,the increase is approximately 12% relative to the early 21st century.The interannual variability of two circulation factors,the western North Pacific subtropical high(WNPSH)and the East Asian upper-tropospheric jet(EAJ),are also projected to exhibit two prominent changes around the 2030s and 2070 under scenario A1B,with consistent increases and decreases afterward,respectively.The MME result also projects two prominent changes in the interannual variability of water vapor transported to East Asia at 850 hPa,which occurs separately around the 2040s and 2070s,with a persistent increase and decrease afterward.Meanwhile,the precipitable water interannual variability over East Asia and the western North Pacific is projected to exhibit two prominent enhancements around the 2030s and 2060s and an increase from 0.1 kg/m2 in the early 21st century to 0.5 kg/m2 at the end of the 21st century,implying a continuous intensification in the interannual variability of the potential precipitation.Otherwise,the intensities of the three factors'(except EAJ)interannual variability are all projected to be stronger at the end of the 21st century than that in the early period.These studies indicate that the change of interannual variability of the East Asian summer rainfall is caused by the variability of both the dynamic and thermodynamic variables under scenario A1B.In the early and middle 21st century,both factors lead to an intensified interannual variability of rainfall,whereas the dynamic factors weaken the interannual variability,and the thermodynamic factor intensifies the interannual variability in the late period.
基金supported by the National Key Project for Basic Science Development (Grant No. 2015CB453203)the National Key Research and Development Program (Grant No. 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41661144017)
文摘This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.