In this study,the reversal of monthly East Asian winter air temperature(EAWT) in 2020/21 and its predictability were investigated.The reversal of monthly EAWT in 2020/21 was characterized by colder temperatures in ear...In this study,the reversal of monthly East Asian winter air temperature(EAWT) in 2020/21 and its predictability were investigated.The reversal of monthly EAWT in 2020/21 was characterized by colder temperatures in early winter(December 2020 to mid-January 2021) and warmer temperatures in late winter(mid-January to February 2021).Results show that the reversal in the intensity of the Siberian high(SH) also occurred between early and late winter in 2020/21.In early winter,as the Barents-Laptev sea ice in the previous September(i.e., in2020) reached a minimum for the period 1981-2020,the SH was strengthaned via a reduction of the meridional gradient between the Arctic and East Asia.In late winter,as a sudden stratospheric warming occurred on 5 January 2021,the stratospheric polar vortex weakened,with the weakest center shifting to North America in January.Subsequently,the negative Arctic Oscillation-like structure shifted towards North America in the middle and lower troposphere,which weakened the SH in late winter.Furthermore,the predictability of the reversal in EAWT in 2020/21 was validated based on monthly and daily predictions from NCEP-CFSv2(National Centers for Environment Prediction-Climate Forecast System,version 2).The results showed that the model was unable to reproduce the monthly reversal of EAWT.However,it was able to forecast the reversal date(18 January 2021)of EAWT at lead times of 1-20 days on the daily scale.展开更多
Previous studies have revealed that the relationship between the El Niño-Southern Oscillation(ENSO)and the East Asian winter monsoon(EAWM)is not statistically significant when the Pacific Decadal Oscillation(PDO)...Previous studies have revealed that the relationship between the El Niño-Southern Oscillation(ENSO)and the East Asian winter monsoon(EAWM)is not statistically significant when the Pacific Decadal Oscillation(PDO)is in its positive phase.This study explores a possible way to obtain a robust ENSO-EAWM relationship from a dynamical point of view.Here,the authors show that the East Asian winter temperature is significantly and continuously correlated with ENSO when the linear impact of the PDO has been linearly removed from ENSO.Such a conclusion is confirmed by different reanalysis datasets.The dynamical process intensifying the ENSO-EAWM is further investigated from the perspective of whether or not the atmospheric teleconnection between the Pacific and East Asia has established.Compared to the situation associated with the original ENSO in the positive phase of the PDO,the Walker circulation associated with the processed ENSO,from which the effect of North Pacific climate systems has been removed,tends to exert a more pronounced influence on the atmospheric circulation over the western North Pacific.Consequently,an anomalous anticyclone emerges in the Kuroshio extension.In this sense,the Pacific-East Asian teleconnection is also well established during the positive phase of the PDO,which favors the impact of ENSO on East Asian winter temperature.展开更多
Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled M...Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project(CMIP5),evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s,and further projects the evolution of the EAWM–AO relationship during the 21st century.It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models(e.g.,GFDL-ESM2M,GISS-E2-H,and MPI-ESM-MR).The coupled models’simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s.Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO.Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s,and insignificant during the 2060s,but uncertain from the 2030s to the 2050s.展开更多
基金jointly supported by the National Natural Science Foundation of China [grant numbers 42088101 and 41730964]the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) [grant number 311021001]。
文摘In this study,the reversal of monthly East Asian winter air temperature(EAWT) in 2020/21 and its predictability were investigated.The reversal of monthly EAWT in 2020/21 was characterized by colder temperatures in early winter(December 2020 to mid-January 2021) and warmer temperatures in late winter(mid-January to February 2021).Results show that the reversal in the intensity of the Siberian high(SH) also occurred between early and late winter in 2020/21.In early winter,as the Barents-Laptev sea ice in the previous September(i.e., in2020) reached a minimum for the period 1981-2020,the SH was strengthaned via a reduction of the meridional gradient between the Arctic and East Asia.In late winter,as a sudden stratospheric warming occurred on 5 January 2021,the stratospheric polar vortex weakened,with the weakest center shifting to North America in January.Subsequently,the negative Arctic Oscillation-like structure shifted towards North America in the middle and lower troposphere,which weakened the SH in late winter.Furthermore,the predictability of the reversal in EAWT in 2020/21 was validated based on monthly and daily predictions from NCEP-CFSv2(National Centers for Environment Prediction-Climate Forecast System,version 2).The results showed that the model was unable to reproduce the monthly reversal of EAWT.However,it was able to forecast the reversal date(18 January 2021)of EAWT at lead times of 1-20 days on the daily scale.
基金This research was supported by the Key Laboratory for Cloud Physics of the China Meteorological Administration[grant number 2018Z01612]Department of Finance of Hebei Province[grant number HBRYWCSY_2017_00].
文摘Previous studies have revealed that the relationship between the El Niño-Southern Oscillation(ENSO)and the East Asian winter monsoon(EAWM)is not statistically significant when the Pacific Decadal Oscillation(PDO)is in its positive phase.This study explores a possible way to obtain a robust ENSO-EAWM relationship from a dynamical point of view.Here,the authors show that the East Asian winter temperature is significantly and continuously correlated with ENSO when the linear impact of the PDO has been linearly removed from ENSO.Such a conclusion is confirmed by different reanalysis datasets.The dynamical process intensifying the ENSO-EAWM is further investigated from the perspective of whether or not the atmospheric teleconnection between the Pacific and East Asia has established.Compared to the situation associated with the original ENSO in the positive phase of the PDO,the Walker circulation associated with the processed ENSO,from which the effect of North Pacific climate systems has been removed,tends to exert a more pronounced influence on the atmospheric circulation over the western North Pacific.Consequently,an anomalous anticyclone emerges in the Kuroshio extension.In this sense,the Pacific-East Asian teleconnection is also well established during the positive phase of the PDO,which favors the impact of ENSO on East Asian winter temperature.
基金supported by the National Natural Science Foundation of China[grants numbers 41505073 and41605059]the Young Talent Support Program by the China Association for Science and Technology[grant number2016QNRC001]
文摘Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project(CMIP5),evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s,and further projects the evolution of the EAWM–AO relationship during the 21st century.It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models(e.g.,GFDL-ESM2M,GISS-E2-H,and MPI-ESM-MR).The coupled models’simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s.Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO.Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s,and insignificant during the 2060s,but uncertain from the 2030s to the 2050s.