Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Ge...Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.展开更多
The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (inclu...The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wave-crest belts. “Fast-waves" propagated with velocities of orders of magnitude of 100~102km/a have been verified by wave-controlled earthquake migration, showing the “decade waves" and “century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the belt-like distribution of strong earthquakes with M S≥7.0, it is indicated further in this paper that the “slow-waves" with velocities of orders of magnitude of 100~101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with M S≥7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accumulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16~0.55 Ma. The wave-generating time at the Himalayan driving boundary is about 1.34~4.59 Ma before present for the “slow-waves", corresponding to the stage from the Mid Pliocene to the Mid Early-Pleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of the wave-controlled belts of strong earthquakes that two optimal patterns of wave-crest belts originated simultaneously from the eastern and western segments of the Himalayan arc, respectively. The overlap of wave-crest belts of these two systems is responsible for the relative concentration of energy and forms the seismic-energy-background zones for strong earthquakes with M S≥7.0.展开更多
Archaea play an important role in global carbon and nitrogen cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers(i GDGTs), are important biomarkers tracing change in archaeal community str...Archaea play an important role in global carbon and nitrogen cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers(i GDGTs), are important biomarkers tracing change in archaeal community structure and biogeochemical processes in the natural environments. In this research, the spatial distributions of archaeal lipids in the surface sediments of the Jiulong River(JR) and the Jiulong River estuary(JRE) were examined. GDGT-0(containing zero cyclopentyl ring) and crenarchaeol were the most abundant i GDGTs in the JR and JRE. From the rivers to the estuary, the total i GDGTs, GDGT-0, crenarchaeol and archaeol concentrations showed significant spatial variation; in particular, GDGT-0 and archaeol in the river may be predominantly derived in situ from methanogens, whereas crenarchaeol in the estuary mainly derived in situ from Thaumarchaeota. We inferred that archaeal community was dominated by methanogens in the Jiulong River and by Thaumarchaeota in the Jiulong River estuary, which are consistent with change in archaeal community structure observed in other estuarine environments.展开更多
基金National Key Technology Support Program (2009BAC51B03)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education (2007)
文摘Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.
文摘The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wave-crest belts. “Fast-waves" propagated with velocities of orders of magnitude of 100~102km/a have been verified by wave-controlled earthquake migration, showing the “decade waves" and “century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the belt-like distribution of strong earthquakes with M S≥7.0, it is indicated further in this paper that the “slow-waves" with velocities of orders of magnitude of 100~101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with M S≥7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accumulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16~0.55 Ma. The wave-generating time at the Himalayan driving boundary is about 1.34~4.59 Ma before present for the “slow-waves", corresponding to the stage from the Mid Pliocene to the Mid Early-Pleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of the wave-controlled belts of strong earthquakes that two optimal patterns of wave-crest belts originated simultaneously from the eastern and western segments of the Himalayan arc, respectively. The overlap of wave-crest belts of these two systems is responsible for the relative concentration of energy and forms the seismic-energy-background zones for strong earthquakes with M S≥7.0.
基金supported by the National Key Basic Research Program of China (Grant No. 2013CB955703)the South China Sea-Deep Program of the National Natural Science Foundation of China (Grant Nos. 91028005 & 91428308)+3 种基金the National Natural Science Foundation of China (Grant Nos. 41276125 & 31470539)the "National Thousand Talents Program" at the State Key Laboratory of Marine Geology of Tongji Universitythe Expenses for Chinese University Basic Researchinterdisciplinary Programs (Grant No. 1350219165)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. IUEQN201307)
文摘Archaea play an important role in global carbon and nitrogen cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers(i GDGTs), are important biomarkers tracing change in archaeal community structure and biogeochemical processes in the natural environments. In this research, the spatial distributions of archaeal lipids in the surface sediments of the Jiulong River(JR) and the Jiulong River estuary(JRE) were examined. GDGT-0(containing zero cyclopentyl ring) and crenarchaeol were the most abundant i GDGTs in the JR and JRE. From the rivers to the estuary, the total i GDGTs, GDGT-0, crenarchaeol and archaeol concentrations showed significant spatial variation; in particular, GDGT-0 and archaeol in the river may be predominantly derived in situ from methanogens, whereas crenarchaeol in the estuary mainly derived in situ from Thaumarchaeota. We inferred that archaeal community was dominated by methanogens in the Jiulong River and by Thaumarchaeota in the Jiulong River estuary, which are consistent with change in archaeal community structure observed in other estuarine environments.