Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene dro...Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.展开更多
The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over E...The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over East Asia in 2010. The simulated results were evaluated by comparing modeled precipitation rates and ion concentrations, such as ammonium(NH_4~+), nitrate(NO_3^-), and sulfate, in rainwater, against observations obtained from Acid Deposition Monitoring Network in East Asia and meteorological stations in China. Comparison of simulated and observed precipitation showed that the modeling system can reproduce seasonal precipitation patterns reasonably well. For major ion species, the simulated results in most cases were in good agreement with those observed. Analysis of the modeled wet deposition distributions indicated that China experiences noticeable variation in wet deposition patterns throughout the year. Nitrogen wet deposition(NH_4~+ + NO_3^-) during summer and spring accounted for 71% of the annual total(3.9 Tg N yr^(-1)), including 42.7% in summer. Precipitation plays a larger role in the seasonal variation of wet deposition; whereas, aerosol concentrations affect its distribution patterns. In China, the amount of annual nitrogen wet deposition ranged from 1 to 18 kg N ha^(-1). Nitrogen in wet deposition was mainly in the form of NH_4~+, accounting for 65.76% of the total amount, and the molar ratio of NH_4~+∕NO_3^- was mostly more than 1, indicating a relatively larger effect from agricultural activities.展开更多
The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal...The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.展开更多
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40603007)
文摘Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.
基金supported by the National Basic Research Program of China[grant number 2014CB953802]the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences[grant numbers XDB05030105,XDB05030102,and XDB05030103]
文摘The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over East Asia in 2010. The simulated results were evaluated by comparing modeled precipitation rates and ion concentrations, such as ammonium(NH_4~+), nitrate(NO_3^-), and sulfate, in rainwater, against observations obtained from Acid Deposition Monitoring Network in East Asia and meteorological stations in China. Comparison of simulated and observed precipitation showed that the modeling system can reproduce seasonal precipitation patterns reasonably well. For major ion species, the simulated results in most cases were in good agreement with those observed. Analysis of the modeled wet deposition distributions indicated that China experiences noticeable variation in wet deposition patterns throughout the year. Nitrogen wet deposition(NH_4~+ + NO_3^-) during summer and spring accounted for 71% of the annual total(3.9 Tg N yr^(-1)), including 42.7% in summer. Precipitation plays a larger role in the seasonal variation of wet deposition; whereas, aerosol concentrations affect its distribution patterns. In China, the amount of annual nitrogen wet deposition ranged from 1 to 18 kg N ha^(-1). Nitrogen in wet deposition was mainly in the form of NH_4~+, accounting for 65.76% of the total amount, and the molar ratio of NH_4~+∕NO_3^- was mostly more than 1, indicating a relatively larger effect from agricultural activities.
基金supported by the National Basic Research Program of China(2012CB955401 and 2009CB421406)the National Natural Science Foundation of China(41175072)
文摘The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.