A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the bac...A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.展开更多
This study reveals a significant relationship, on the interannual timescale, between a dipole mode, the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asi...This study reveals a significant relationship, on the interannual timescale, between a dipole mode, the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asia. Related to the dipole mode, with the heavier sea ice in the north and lighter sea ice in the southeast Barents Sea in spring, the East Asian summer subtropical rainy belt tends to move northward. The significant relationship is established through a wave train over northern Eurasia in the lower troposphere in June. The wave train enhances the northern East Asian low, which induces more rainfall to the north of the East Asian subtropical rainy belt and then attracts the subtropical rainy belt to move northward. This study suggests that the dipole mode of spring sea-ice anomalies in the Barents Sea may be a good precursor for the prediction of East Asian summer rainfall.展开更多
Russia-Japan and China-Japan Island Disputes have gradually garnered attention as the top hot spot in Northeast Asia. The Japanese government's claim of"nationalization" of Diaoyu Island is worsening the tensions i...Russia-Japan and China-Japan Island Disputes have gradually garnered attention as the top hot spot in Northeast Asia. The Japanese government's claim of"nationalization" of Diaoyu Island is worsening the tensions in China and Japan's economic and trade cooperation, the exchange of personnel and politics and military fields. Approaching the issue from the perspective of the international system evolution can provide us a new way of solving the problem. Because of the unsettlement of the new intemational system, shelving disputes is the most feasible approach.展开更多
An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interi...An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interim reanalysis.The East Asian warming anomalies were primarily attributed to a tripole mode of North Atlantic SST anomalies,which could have triggered anomalous Rossby wave trains over the North Atlantic and Eurasia through modulating the North Atlantic baroclinic instability.Atlantic-forced Rossby waves tend to propagate eastward and induce anomalously high pressure and anticyclonic activity over East Asia,leading to a northward displacement of the Pacific subtropical high.As a result,descending motion,reduced precipitation,and increased surface solar radiation due to less cloud cover appear over East Asia,accompanied by remarkably warm advection from the ocean to southern China,northern China,and Japan.The transportation of anomalously warm advection and the feedbacks between soil moisture and surface temperature were both favorable for the recordbreaking warmth in East Asia during spring 2018.The seasonal‘memory’of the North Atlantic tripole SST mode from the previous winter to the following spring may provide useful implications for the seasonal prediction of East Asian weather and climate.展开更多
The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global t...The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia(ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess(L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.展开更多
By using Constellation Observing System for Meteorology, Ionosphere, and Climate satellite observa- tions, and Global Ionosphere and Thermosphere Model simulations, the altitudinal dependences of the longitudinal diff...By using Constellation Observing System for Meteorology, Ionosphere, and Climate satellite observa- tions, and Global Ionosphere and Thermosphere Model simulations, the altitudinal dependences of the longitudinal differences in electron densities Ne were studied at mid- latitudes for the first time. Distinct altitudinal dependences were revealed: (1) In the northern (southern) hemisphere, there were wave-1 variations mainly in the daytime in the altitudes below 180 km, but wave-2 (wave-l) variations over a whole day above 220 km; (2) a transition (or sep- aration) layer occurred mainly in the daytime within 180 and 220 km, showing reversed longitudinal variation from that at lower altitudes. Solar illumination was one of the plausible mechanisms for the zonal difference of Ne at lower altitudes. At higher altitudes, both neutral winds and solar illumination played important roles. The neutral winds effects accounted for the longitudinal differences in Ne in the European-Asian sector. Neutral composition changes and neutral wind effects both contributed to the formation of the transition layer.展开更多
基金supported by the Ministry of Science and Technology of China(National Basic Research Program of China(Grant No.2012CB955602))the National Key Program for Developing Basic Science(Grant No.2010CB428904)the Natural Science Foundation of China(Grant Nos.40830106,40921004,41176006)
文摘A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.
基金supported by the National Natural Science Foundation of China[grant numbers 41375086 and 41775062]the National Natural Science Foundation of China[grant number 41630530]+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS)supported by the Youth Innovation Promotion Association of CAS
文摘This study reveals a significant relationship, on the interannual timescale, between a dipole mode, the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asia. Related to the dipole mode, with the heavier sea ice in the north and lighter sea ice in the southeast Barents Sea in spring, the East Asian summer subtropical rainy belt tends to move northward. The significant relationship is established through a wave train over northern Eurasia in the lower troposphere in June. The wave train enhances the northern East Asian low, which induces more rainfall to the north of the East Asian subtropical rainy belt and then attracts the subtropical rainy belt to move northward. This study suggests that the dipole mode of spring sea-ice anomalies in the Barents Sea may be a good precursor for the prediction of East Asian summer rainfall.
文摘Russia-Japan and China-Japan Island Disputes have gradually garnered attention as the top hot spot in Northeast Asia. The Japanese government's claim of"nationalization" of Diaoyu Island is worsening the tensions in China and Japan's economic and trade cooperation, the exchange of personnel and politics and military fields. Approaching the issue from the perspective of the international system evolution can provide us a new way of solving the problem. Because of the unsettlement of the new intemational system, shelving disputes is the most feasible approach.
基金supported by the National Key Research and Development Program of China [grant number2016YFA0602703]the National Natural Science Foundation of China [grant numbers 41661144019,41690123,41690120,and91637208]+1 种基金the CMA Guangzhou Joint Research Center for Atmospheric Sciencesthe Jiangsu Collaborative Innovation Center for Climate Change
文摘An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interim reanalysis.The East Asian warming anomalies were primarily attributed to a tripole mode of North Atlantic SST anomalies,which could have triggered anomalous Rossby wave trains over the North Atlantic and Eurasia through modulating the North Atlantic baroclinic instability.Atlantic-forced Rossby waves tend to propagate eastward and induce anomalously high pressure and anticyclonic activity over East Asia,leading to a northward displacement of the Pacific subtropical high.As a result,descending motion,reduced precipitation,and increased surface solar radiation due to less cloud cover appear over East Asia,accompanied by remarkably warm advection from the ocean to southern China,northern China,and Japan.The transportation of anomalously warm advection and the feedbacks between soil moisture and surface temperature were both favorable for the recordbreaking warmth in East Asia during spring 2018.The seasonal‘memory’of the North Atlantic tripole SST mode from the previous winter to the following spring may provide useful implications for the seasonal prediction of East Asian weather and climate.
基金supported by the National Natural Science Foundation of China(Grant Nos.41302144&41130102)the Programme of Introducing Talents of Discipline to Universities(111 Project)(Grant No.B06026)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University(Grant No.LZUJBKY-2013-BT01)
文摘The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia(ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess(L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.
文摘By using Constellation Observing System for Meteorology, Ionosphere, and Climate satellite observa- tions, and Global Ionosphere and Thermosphere Model simulations, the altitudinal dependences of the longitudinal differences in electron densities Ne were studied at mid- latitudes for the first time. Distinct altitudinal dependences were revealed: (1) In the northern (southern) hemisphere, there were wave-1 variations mainly in the daytime in the altitudes below 180 km, but wave-2 (wave-l) variations over a whole day above 220 km; (2) a transition (or sep- aration) layer occurred mainly in the daytime within 180 and 220 km, showing reversed longitudinal variation from that at lower altitudes. Solar illumination was one of the plausible mechanisms for the zonal difference of Ne at lower altitudes. At higher altitudes, both neutral winds and solar illumination played important roles. The neutral winds effects accounted for the longitudinal differences in Ne in the European-Asian sector. Neutral composition changes and neutral wind effects both contributed to the formation of the transition layer.