Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development ...Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.展开更多
基金supported by the National Basic Research Program of China(2012CB955602)Ministry of Science and Technology of China(National Key Program for Developing Basic Science 2010CB428904)+1 种基金the NSFC(41176006,40921004,41106010)the 111 Project of China(Program of Introducing Talents of Discipline to Universities No.B07036)
文摘Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.