In this paper for the first time we reported Doria's comb fingered gecko, Stenodactylus doriae (Blanford, 1874), during night searching, from the Parak area in Sistan & Baluchistan province, southeastern Iran. Dis...In this paper for the first time we reported Doria's comb fingered gecko, Stenodactylus doriae (Blanford, 1874), during night searching, from the Parak area in Sistan & Baluchistan province, southeastern Iran. Distance of collected specimens in this study is 800 km far away from the previous reports of this species in Iran in the coastal plain of Fars and Kerman provinces as well as the lower Mesopotamian plain in Khuzestan. Our specimens were collected during night on loose sand among scattered low desert shrubs. New updated distribution map for the species is presented which extends the distribution of this lizard into eastern and southeastern Iran. Morphometrics and morphological characters of the collected specimens along with notes on ecological aspects of the study area are provided.展开更多
The wind fetch effect is important to wind erosion and aeolian transport and controls aeolian flux.It is useful to study the wind fetch effect in determining the aeolian transport mechanism and improving our knowledge...The wind fetch effect is important to wind erosion and aeolian transport and controls aeolian flux.It is useful to study the wind fetch effect in determining the aeolian transport mechanism and improving our knowledge of aeolian physics and wind erosion.In this paper,multichannel samplers measure aeolian transport at different heights above an artificial Gobi surface in the southeastern region of the Tengger Desert.The results show that aeolian transport flux can be expressed as an exponential function of height.Wind fetch obviously affects aeolian flux and aeolian transport.The coefficients and relative decay rate of aeolian flux decrease and then increase with increasing wind fetch distance.Aeolian transport depends on the height and fetch distance;aeolian transport increases and then decreases with increasing fetch distance,reaching a maximum at a fetch distance of about 34 m at the very near surface.The fetch distance of maximum aeolian transport tends to increase with height.展开更多
The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To in...The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.展开更多
文摘In this paper for the first time we reported Doria's comb fingered gecko, Stenodactylus doriae (Blanford, 1874), during night searching, from the Parak area in Sistan & Baluchistan province, southeastern Iran. Distance of collected specimens in this study is 800 km far away from the previous reports of this species in Iran in the coastal plain of Fars and Kerman provinces as well as the lower Mesopotamian plain in Khuzestan. Our specimens were collected during night on loose sand among scattered low desert shrubs. New updated distribution map for the species is presented which extends the distribution of this lizard into eastern and southeastern Iran. Morphometrics and morphological characters of the collected specimens along with notes on ecological aspects of the study area are provided.
基金supported by the National Natural Science Foundation of China (Grant Nos.41101007,41130533 and 41171010)
文摘The wind fetch effect is important to wind erosion and aeolian transport and controls aeolian flux.It is useful to study the wind fetch effect in determining the aeolian transport mechanism and improving our knowledge of aeolian physics and wind erosion.In this paper,multichannel samplers measure aeolian transport at different heights above an artificial Gobi surface in the southeastern region of the Tengger Desert.The results show that aeolian transport flux can be expressed as an exponential function of height.Wind fetch obviously affects aeolian flux and aeolian transport.The coefficients and relative decay rate of aeolian flux decrease and then increase with increasing wind fetch distance.Aeolian transport depends on the height and fetch distance;aeolian transport increases and then decreases with increasing fetch distance,reaching a maximum at a fetch distance of about 34 m at the very near surface.The fetch distance of maximum aeolian transport tends to increase with height.
基金supported by the National Natural Science Foundation of China (Grant No. 41405003)Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41521004)+1 种基金the Programme of Introducing Talents of Discipline to Universities (Grant No. B 13045)the Foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University
文摘The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.