This paper investigates the size distribution of submarine landslides on the middle continental slope of the East China Sea (ECS) using the size of the landslide source regions. Geomorphometric mapping is used to iden...This paper investigates the size distribution of submarine landslides on the middle continental slope of the East China Sea (ECS) using the size of the landslide source regions. Geomorphometric mapping is used to identify 102 mass movements from multibeam bathymetric data and to extract morphological information about the head scarps and side walls. These mass movements have areas ranging between 0.06 km2 and 15.51 km2 and volumes between 0.002 km3 and 2 km3. The area vs volume relationship of these failure scarps is approximately linear, suggesting a fairly uniform failure thickness in each event with scarce deep excavating landslides. The cumulative area distribution of the slope failures can be described by an inverse power law. The submarine landslides on the mid-ECS continental slope could be considered as a large-scale self-organizing system because they have the characteristics of a dissipative system in a critical state.展开更多
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. In...Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.展开更多
Editor’s Note:In an article published on May 19 in the Singaporean newspaper The Straits Times entitled"U.S.’s Rebalancing Is Fishing in South China Sea’s Troubled Waters,"Xu Bu,Chinese Ambassador to the Associa...Editor’s Note:In an article published on May 19 in the Singaporean newspaper The Straits Times entitled"U.S.’s Rebalancing Is Fishing in South China Sea’s Troubled Waters,"Xu Bu,Chinese Ambassador to the Association of Southeast Asian Nations(ASEAN),analyses the role the United States has played in the region after President Barack Obama's administration adopted the Asia- Pacific rebalancing strategy.展开更多
基金funded by the National Science Foundation of China (NSFC) (Nos.40506018, 40576033,40421150011, 40706038 and 40606026)the Ministry of Science and Technology of China (No. 2003cb716706)the Open Research Foundation of State Key Labora-tory of Geohazard Prevention and Geoenvironment Pro-tection (No. GZ2006-01)
文摘This paper investigates the size distribution of submarine landslides on the middle continental slope of the East China Sea (ECS) using the size of the landslide source regions. Geomorphometric mapping is used to identify 102 mass movements from multibeam bathymetric data and to extract morphological information about the head scarps and side walls. These mass movements have areas ranging between 0.06 km2 and 15.51 km2 and volumes between 0.002 km3 and 2 km3. The area vs volume relationship of these failure scarps is approximately linear, suggesting a fairly uniform failure thickness in each event with scarce deep excavating landslides. The cumulative area distribution of the slope failures can be described by an inverse power law. The submarine landslides on the mid-ECS continental slope could be considered as a large-scale self-organizing system because they have the characteristics of a dissipative system in a critical state.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2010CB428701, 2005CB422305)
文摘Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.
文摘Editor’s Note:In an article published on May 19 in the Singaporean newspaper The Straits Times entitled"U.S.’s Rebalancing Is Fishing in South China Sea’s Troubled Waters,"Xu Bu,Chinese Ambassador to the Association of Southeast Asian Nations(ASEAN),analyses the role the United States has played in the region after President Barack Obama's administration adopted the Asia- Pacific rebalancing strategy.