Evaluation on the population pressure in the mountainous areas is a necessary condition for the protection and good governance. The evaluation depends on accurate population density assessment. Traditional methods use...Evaluation on the population pressure in the mountainous areas is a necessary condition for the protection and good governance. The evaluation depends on accurate population density assessment. Traditional methods used to calculate population density often adopt the administrative region as a scale for statistical analysis. These methods did not consider the effects of the relief degree of land surface(RDLS) on the population distribution. Therefore they cannot accurately reflect the degree of population aggregation, especially in mountainous areas. To explore this issue further, we took the mountainous areas of China as the research area. China has A total area of 666 km2 can be classified as mountainous area,accounting for 69.4% of the country's total landmass. The data used in this research included the digital elevation model(DEM) of China at a scale of 1:1,000,000, National population density raster data, the DEM and the national population density raster data. First, we determined the relief degree of land surface(RDLS). Next, we conducted a correlation analysis between the population distribution and the RDLS using the Statistical Package for Social Science(SPSS). Based on the correlation analysis results and population distribution, this new method was used to revise the provincial population density of themountainous areas. The revised results were used to determine the population pressure of different mountainous areas. Overall, the following results were obtained:(1) The RDLS was low in most mountainous areas(with a value between 0 and 3.5) and exhibited a spatial pattern that followed the physiognomy of China;(2) The relationship between the RDLS and population density were logarithmic, with an R2 value up to 0.798(p<0.05), and the correlation decreased from east to west;(3) The difference between the revised population density(RPD) and the traditional population density(PD) was larger in the southeastern region of China than in the northwestern region;(4) In addition, compared with traditional results, the revised result indicated that the population pressure was larger. Based on these results, the following conclusions were made:(1) the revised method for estimating population density that incorporates the RDLS is reasonable and practical,(2) the potential population pressure in the southeastern mountainous areas is substantial,(3) the characteristics of the terrain in the high mountainous areas are important for the scattered distribution of the population, and(4) the population distribution of mountainous areas in China should be guided by local conditions, such as social, economic, and topographic conditions.展开更多
In the coastal catchments of Shandong Province the water scarcity is aggravated due to saltwater intrusion, reducing the usability of water resources available. Such a situation calls for sustainable integrated water ...In the coastal catchments of Shandong Province the water scarcity is aggravated due to saltwater intrusion, reducing the usability of water resources available. Such a situation calls for sustainable integrated water resources management (IWRM). The idea for the objectives and implementation of the IWRM are explained in this paper. The general objective of the planned project disscussed in the present study is to bring together German traditional expertise in water resources management and newer developments in the context of the European Water Framework Directive; the research efforts aim to relieve the desperate water scarcity situation in the costal area of Shandong Province.展开更多
This paper analyses the internal problems and external constraints against the further development of exports trade of Shandong agricultural products. The countermeasures in solving those problems and constraints are ...This paper analyses the internal problems and external constraints against the further development of exports trade of Shandong agricultural products. The countermeasures in solving those problems and constraints are recommended to ensure a sustainable development of Shandong regional agricultural products exports.展开更多
The Linglong-Jiaojia ore-centralized district is controlled by the tectonic stress field characterized by the combination of extension and strike-slip, and the dip, dip angle, pitch and pitch angle of the ore bodies a...The Linglong-Jiaojia ore-centralized district is controlled by the tectonic stress field characterized by the combination of extension and strike-slip, and the dip, dip angle, pitch and pitch angle of the ore bodies are all constrained by the dynamic conditions of the tectonics. The metallotectonic series for the ore-centralized district belong to the type of a combination of extension and strike-slip and can be subdivided into four sub-series. The ore-forming process in the brittle regime can be disintegrated into two stages, i.e., the embryonic fracture stage and the megascopic fracture stage, and ore-forming process is rather common in the ore-centralized district at the former stage. Moreover, several key structural patterns and their features were discussed and a preliminary assessment about the ore-forming prospect in this district was made in the paper.展开更多
基金supported by a grant from the Major State Basic Research Development Program of China (973 Program) (Grant No. 2015CB452706)National Natural Science Foundation of China (Grant No. 41471469)provided by the national scientific datasharing project Earth System Science Data Sharing Network
文摘Evaluation on the population pressure in the mountainous areas is a necessary condition for the protection and good governance. The evaluation depends on accurate population density assessment. Traditional methods used to calculate population density often adopt the administrative region as a scale for statistical analysis. These methods did not consider the effects of the relief degree of land surface(RDLS) on the population distribution. Therefore they cannot accurately reflect the degree of population aggregation, especially in mountainous areas. To explore this issue further, we took the mountainous areas of China as the research area. China has A total area of 666 km2 can be classified as mountainous area,accounting for 69.4% of the country's total landmass. The data used in this research included the digital elevation model(DEM) of China at a scale of 1:1,000,000, National population density raster data, the DEM and the national population density raster data. First, we determined the relief degree of land surface(RDLS). Next, we conducted a correlation analysis between the population distribution and the RDLS using the Statistical Package for Social Science(SPSS). Based on the correlation analysis results and population distribution, this new method was used to revise the provincial population density of themountainous areas. The revised results were used to determine the population pressure of different mountainous areas. Overall, the following results were obtained:(1) The RDLS was low in most mountainous areas(with a value between 0 and 3.5) and exhibited a spatial pattern that followed the physiognomy of China;(2) The relationship between the RDLS and population density were logarithmic, with an R2 value up to 0.798(p<0.05), and the correlation decreased from east to west;(3) The difference between the revised population density(RPD) and the traditional population density(PD) was larger in the southeastern region of China than in the northwestern region;(4) In addition, compared with traditional results, the revised result indicated that the population pressure was larger. Based on these results, the following conclusions were made:(1) the revised method for estimating population density that incorporates the RDLS is reasonable and practical,(2) the potential population pressure in the southeastern mountainous areas is substantial,(3) the characteristics of the terrain in the high mountainous areas are important for the scattered distribution of the population, and(4) the population distribution of mountainous areas in China should be guided by local conditions, such as social, economic, and topographic conditions.
文摘In the coastal catchments of Shandong Province the water scarcity is aggravated due to saltwater intrusion, reducing the usability of water resources available. Such a situation calls for sustainable integrated water resources management (IWRM). The idea for the objectives and implementation of the IWRM are explained in this paper. The general objective of the planned project disscussed in the present study is to bring together German traditional expertise in water resources management and newer developments in the context of the European Water Framework Directive; the research efforts aim to relieve the desperate water scarcity situation in the costal area of Shandong Province.
文摘This paper analyses the internal problems and external constraints against the further development of exports trade of Shandong agricultural products. The countermeasures in solving those problems and constraints are recommended to ensure a sustainable development of Shandong regional agricultural products exports.
基金supported by China National Science Foundation Grant No.40072022CAS Knowledge Innovation Project No.KZCX2-SW-1l7
文摘The Linglong-Jiaojia ore-centralized district is controlled by the tectonic stress field characterized by the combination of extension and strike-slip, and the dip, dip angle, pitch and pitch angle of the ore bodies are all constrained by the dynamic conditions of the tectonics. The metallotectonic series for the ore-centralized district belong to the type of a combination of extension and strike-slip and can be subdivided into four sub-series. The ore-forming process in the brittle regime can be disintegrated into two stages, i.e., the embryonic fracture stage and the megascopic fracture stage, and ore-forming process is rather common in the ore-centralized district at the former stage. Moreover, several key structural patterns and their features were discussed and a preliminary assessment about the ore-forming prospect in this district was made in the paper.