Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify th...Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.展开更多
The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The r...The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.展开更多
This paper investigates the regional distribution and pollution of energyintensive industries in China. Through the analysis of provincial panel data collected during 1998-2008, this work estimates the drivers of poll...This paper investigates the regional distribution and pollution of energyintensive industries in China. Through the analysis of provincial panel data collected during 1998-2008, this work estimates the drivers of pollution in 30 of China's provincial-level divisions. The paper concludes that while China's energy-intensive industries are heavily distributed in eastern and central China, the speed of development toward central and western China has, in recent years, risen continuously. Industries located in eastern China do, however, remain the primary polluters in the country. Notably, regional agglomeration of energy-intensive industries plays a positive role in energy conservation and pollution control in China. This paper also finds that patterns of pollution in China follow the environmental Kuznets curve (EKC) with strong inter-provincial discrepancies.展开更多
The Nested Air Quality Prediction Model System(NAQPMS)was used to investigate the temporal and spatial variations of PM2.5over tropospheric central eastern China in January 2013.The impact of regional transport and it...The Nested Air Quality Prediction Model System(NAQPMS)was used to investigate the temporal and spatial variations of PM2.5over tropospheric central eastern China in January 2013.The impact of regional transport and its implications on pollution prevention and control were also examined.Comparison between simulated and observed PM2.5showed NAQPMS was able to reproduce the evolution of PM2.5during heavy haze episodes.The results indicated that regional transport of PM2.5played an important role in regional haze episodes in the city cluster including Hebei,Beijing and Tianjin(HBT).The cross-city clusters transport outside HBT and transport among cities inside HBT contributed 20%–35%and 26%–35%of PM2.5as compared with local emission,in HBT respectively.To meet the Air Quality Standards for Grade II,90%,90%and65%of emissions would have to be cut down in Hebei,Tianjin and Beijing,if non-control strategy was taken in the surrounding city clusters of HBT.This implicated that control of emissions in one city cluster is not sufficient to reduce regional haze events,and joint efforts among city clusters are essential.Besides regional transports,two-way feedback between boundary-layer evolution and PM2.5also significantly contributed to the formation of heavy hazes,which contributed 30%of monthly average PM2.5concentration in HBT.展开更多
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2004CB418502,No. 2007CB407205)the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX1-YW-09-13)
文摘Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.
基金supported by the National Basic Research Program of China(No.2012CB955902)
文摘The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.
基金This paper was made possible by grants from the Modern Business Research Center of Zhejiang Gongshang University, Zhejiang Provincial Natural Science Foundation.
文摘This paper investigates the regional distribution and pollution of energyintensive industries in China. Through the analysis of provincial panel data collected during 1998-2008, this work estimates the drivers of pollution in 30 of China's provincial-level divisions. The paper concludes that while China's energy-intensive industries are heavily distributed in eastern and central China, the speed of development toward central and western China has, in recent years, risen continuously. Industries located in eastern China do, however, remain the primary polluters in the country. Notably, regional agglomeration of energy-intensive industries plays a positive role in energy conservation and pollution control in China. This paper also finds that patterns of pollution in China follow the environmental Kuznets curve (EKC) with strong inter-provincial discrepancies.
基金supported by the CAS Strategic Priority Research Program(Grant Nos.XDB05030200 and XDB05030101)the National Natural Science Foundation of China(Grant No.41278138)
文摘The Nested Air Quality Prediction Model System(NAQPMS)was used to investigate the temporal and spatial variations of PM2.5over tropospheric central eastern China in January 2013.The impact of regional transport and its implications on pollution prevention and control were also examined.Comparison between simulated and observed PM2.5showed NAQPMS was able to reproduce the evolution of PM2.5during heavy haze episodes.The results indicated that regional transport of PM2.5played an important role in regional haze episodes in the city cluster including Hebei,Beijing and Tianjin(HBT).The cross-city clusters transport outside HBT and transport among cities inside HBT contributed 20%–35%and 26%–35%of PM2.5as compared with local emission,in HBT respectively.To meet the Air Quality Standards for Grade II,90%,90%and65%of emissions would have to be cut down in Hebei,Tianjin and Beijing,if non-control strategy was taken in the surrounding city clusters of HBT.This implicated that control of emissions in one city cluster is not sufficient to reduce regional haze events,and joint efforts among city clusters are essential.Besides regional transports,two-way feedback between boundary-layer evolution and PM2.5also significantly contributed to the formation of heavy hazes,which contributed 30%of monthly average PM2.5concentration in HBT.