To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern...To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.展开更多
The Taihu Lake,a large shallow lake in the floodplain of the Changjiang(Yangtze) River in the eastern China,is faced with challenging ecological problems resulting from eutrophication,which has affected the regional f...The Taihu Lake,a large shallow lake in the floodplain of the Changjiang(Yangtze) River in the eastern China,is faced with challenging ecological problems resulting from eutrophication,which has affected the regional freshwater supply of a large population.Although efforts have been made to assess the nutrient evolution histories in the northern bays,little is known regarding nutrient histories in different parts across the entire lake basin.In this paper,we present nutrient histories for different parts of the lake based on chironomid transfer functions applied to four short cores obtained from the northern,western and eastern regions of the lake.The chironomid-inferred total phosphorus(CI-TP) concentrations were compared with the phosphorus concentrations obtained by using instrumental and sedimentary data.The results suggest that trophic evolution histories were asynchronous throughout the lake during the past decades in response to different ecological regimes controlled by the nutrient input,wind direction and shoreline topography.The restoration of aquatic plants may be an effective option for the management of lake rehabilitation to ′natural′ conditions.Given the multiple factors controlling the biotic communities in such a large and complex lake,combined analyses among the multi-proxies encountered in the sediments are necessary for comprehensive insight into paleolimnological studies.The spatial heterogeneity in the ecological trajectories within this complicated ecosystem suggests that different management practices should be undertaken for specific lake zones in the Taihu Lake.展开更多
Research on the optical characteristics of water color constituents in Chagan Lake of Jilin Province,Northeast China was carried out in order to investigate the variability of the spectra absorption parameters as inpu...Research on the optical characteristics of water color constituents in Chagan Lake of Jilin Province,Northeast China was carried out in order to investigate the variability of the spectra absorption parameters as inputs to bio-optical models and remote sensing algorithms for converting observed spectral signals into water quality information.Samples of total particulates,non-algal particles and colored dissolved organic matter (CDOM) were first prepared by quantitative filter technique (QFT) and then absorption coefficients of these color producing agents were determined by spectrophotometry.Spectral characteristics of absorption coefficients by total particulate matter,spectral specific absorption dependency on chlorophyll concentration (Chl-a) of phytoplankton,spectral absorption slopes variation for CDOM and non-algal particles and their corresponding reasons were examined and clarified over five months of 2009 and 2010 in this study.Results suggest that total particulate spectral absorption in Chagan Lake is mainly dominated by non-algal particles in most cases,but phytoplankton could be the dominant contributor when chlorophyll concentration is high (up to 84.48 mg/m3 in autumn 2010).The specific absorption coefficients of phytoplankton particulate (a*ph(λ)) dependency on Chl-a is significantly variable due to relative contributions of package effect and accessory pigments,and the parameters of power function are clearly biased on a long time span.The sources of variability in spectral absorption slopes of CDOM and non-algal particles are mainly attributed to the changing proportions of high molecular weight humic acids and mineral suspended sediments in waters,respectively.展开更多
The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthrop...The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.展开更多
基金Supported by the Major Projects on Control and Rectification of Water Body Pollution (No. 2008ZX07101-012)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW14)+1 种基金the Aquaculture "three projects" of Jiangsu (No. J2009-12)the Agricultural Basic Research Fund of Suzhou (No. YJG0912)
文摘To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.
基金Under the auspices of National Basic Research Program of China(No.2012CB9561002008CB418103)National Natural Science Foundation of China(No.41072267)
文摘The Taihu Lake,a large shallow lake in the floodplain of the Changjiang(Yangtze) River in the eastern China,is faced with challenging ecological problems resulting from eutrophication,which has affected the regional freshwater supply of a large population.Although efforts have been made to assess the nutrient evolution histories in the northern bays,little is known regarding nutrient histories in different parts across the entire lake basin.In this paper,we present nutrient histories for different parts of the lake based on chironomid transfer functions applied to four short cores obtained from the northern,western and eastern regions of the lake.The chironomid-inferred total phosphorus(CI-TP) concentrations were compared with the phosphorus concentrations obtained by using instrumental and sedimentary data.The results suggest that trophic evolution histories were asynchronous throughout the lake during the past decades in response to different ecological regimes controlled by the nutrient input,wind direction and shoreline topography.The restoration of aquatic plants may be an effective option for the management of lake rehabilitation to ′natural′ conditions.Given the multiple factors controlling the biotic communities in such a large and complex lake,combined analyses among the multi-proxies encountered in the sediments are necessary for comprehensive insight into paleolimnological studies.The spatial heterogeneity in the ecological trajectories within this complicated ecosystem suggests that different management practices should be undertaken for specific lake zones in the Taihu Lake.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-341,KZCX2-YW-340)Key Project of Jilin Province Scientific and Technological Development Program (No.20080425)
文摘Research on the optical characteristics of water color constituents in Chagan Lake of Jilin Province,Northeast China was carried out in order to investigate the variability of the spectra absorption parameters as inputs to bio-optical models and remote sensing algorithms for converting observed spectral signals into water quality information.Samples of total particulates,non-algal particles and colored dissolved organic matter (CDOM) were first prepared by quantitative filter technique (QFT) and then absorption coefficients of these color producing agents were determined by spectrophotometry.Spectral characteristics of absorption coefficients by total particulate matter,spectral specific absorption dependency on chlorophyll concentration (Chl-a) of phytoplankton,spectral absorption slopes variation for CDOM and non-algal particles and their corresponding reasons were examined and clarified over five months of 2009 and 2010 in this study.Results suggest that total particulate spectral absorption in Chagan Lake is mainly dominated by non-algal particles in most cases,but phytoplankton could be the dominant contributor when chlorophyll concentration is high (up to 84.48 mg/m3 in autumn 2010).The specific absorption coefficients of phytoplankton particulate (a*ph(λ)) dependency on Chl-a is significantly variable due to relative contributions of package effect and accessory pigments,and the parameters of power function are clearly biased on a long time span.The sources of variability in spectral absorption slopes of CDOM and non-algal particles are mainly attributed to the changing proportions of high molecular weight humic acids and mineral suspended sediments in waters,respectively.
基金jointly sponsored by the National Natural Science Foundation of China(41030745,41271500)Key Project of Chinese Academy of Sciences(KZZDEW-10-4)+1 种基金Key"135"Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(NIGLAS2012135005)the Scientific Research Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(Y4SL011036)
文摘The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.