[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by ...[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.展开更多
Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled M...Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project(CMIP5),evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s,and further projects the evolution of the EAWM–AO relationship during the 21st century.It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models(e.g.,GFDL-ESM2M,GISS-E2-H,and MPI-ESM-MR).The coupled models’simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s.Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO.Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s,and insignificant during the 2060s,but uncertain from the 2030s to the 2050s.展开更多
Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the...Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.展开更多
The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the com...The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the combined sea level pressure,850-hPa low-level wind,and rainfall fields.The solstitial mode shows a zonal pressure contrast between the continental thermal low and the western Pacific subtropical high,reaching its peak in July and dominating the East Asian summer monsoon.The equinoctial mode shows an approximate zonal contrast between the low-level cyclone over the east of the Tibetan Plateau and the western Pacific anticyclone over the east of the Philippines.It prevails during the spring rainy season in South China and reaches its peak in April.The interannual variations of the lead–lag phase of the two modes may result in the negative correlation of rainfall anomalies in North China between spring and fall and in South China between winter and summer,which provides a potential basis for the across-seasonal prediction of rainfall.The warm phase of ENSO in winter could give rise to the reverse interseasonal rainfall anomalies in South China,while the SST anomaly in the Northwest Pacific Ocean may regulate the rainfall anomaly in North China.展开更多
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence o...Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan:high correlation (r=0.92) with the on-shore volume flux in the lower layer (50 200 m) ;low correlation (r=0.50) with the on-shore flux in the upper layer (0 50 m) .Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162 E by about 14 months,and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves.The intrusion of Kuroshio surface water is also influenced by local winds.The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf.The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath,and northeastward to the region near the 90 m isobath.展开更多
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper ...In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Nifia phase and weakening in the E1 Nifio phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.展开更多
Previous studies have revealed that the relationship between the El Niño-Southern Oscillation(ENSO)and the East Asian winter monsoon(EAWM)is not statistically significant when the Pacific Decadal Oscillation(PDO)...Previous studies have revealed that the relationship between the El Niño-Southern Oscillation(ENSO)and the East Asian winter monsoon(EAWM)is not statistically significant when the Pacific Decadal Oscillation(PDO)is in its positive phase.This study explores a possible way to obtain a robust ENSO-EAWM relationship from a dynamical point of view.Here,the authors show that the East Asian winter temperature is significantly and continuously correlated with ENSO when the linear impact of the PDO has been linearly removed from ENSO.Such a conclusion is confirmed by different reanalysis datasets.The dynamical process intensifying the ENSO-EAWM is further investigated from the perspective of whether or not the atmospheric teleconnection between the Pacific and East Asia has established.Compared to the situation associated with the original ENSO in the positive phase of the PDO,the Walker circulation associated with the processed ENSO,from which the effect of North Pacific climate systems has been removed,tends to exert a more pronounced influence on the atmospheric circulation over the western North Pacific.Consequently,an anomalous anticyclone emerges in the Kuroshio extension.In this sense,the Pacific-East Asian teleconnection is also well established during the positive phase of the PDO,which favors the impact of ENSO on East Asian winter temperature.展开更多
This study focuses on the interdecadal changes in ENSO properties emerging around the year 2000. Compared to 1980-1999, after 2000, the ENSO amplitude weakened, the occurrence of the central Pacific (CP) Et Nino inc...This study focuses on the interdecadal changes in ENSO properties emerging around the year 2000. Compared to 1980-1999, after 2000, the ENSO amplitude weakened, the occurrence of the central Pacific (CP) Et Nino increased, and the eastern Pacific (EP) El Nino became suppressed. Meanwhile, the dominant period of ENSO shortened from quasi-quadrennial (QQ) to quasi-biennial (QB). The authors show that these changes in ENSO properties are evidently consistent with the change in the stability of the ENSO mode through connecting the two ENSO types with the two coupled ENSO modes, i.e. the QQ and QB modes. It is suggested that the relative activity or stability of the two ENSO modes changed after the year 2000. The intensity of both the QQ and QB mode weakened. The QQ mode, which is linked to EP ENSO and was significantly strong during 1980-1999, became much weaker after 2000 in terms of the EP type almost disappearing. Compared with the weakness of the QQ mode, the QB mode, as manifested by the CP type, remained active and became dominant in the tropical Pacific after 2000. Analysis shows that the changes in mean states in the tropical Pacific were likely responsible for the interdecadal ENSO changes around the year 2000.展开更多
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actua...Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.展开更多
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Glob...This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.展开更多
This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern floo...This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern flood and Northern drought(SFND)"summer rainfall pattern over East China.The mechanism behind this contribution is also discussed.展开更多
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with th...Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.展开更多
This work traces the historical development and impact of political Islam on international relations (IR) from the last century to date. In this article the author asserts that understanding the rise of political Is...This work traces the historical development and impact of political Islam on international relations (IR) from the last century to date. In this article the author asserts that understanding the rise of political Islam at the world's stage and IR generally can be genealogically traced to two interrelated developments: the rise of the Muslim Brotherhood (MB) in Egypt since 1928 as a social and political movement against the growing Western influence in the Islamic World after the collapse of the ottoman empire; and the development of the post-World War II IR theories, and practices which provided the basis of the political, military, and security doctrines of the United States and its allies which proved its lack of reliability and validity, particularly as related to the Muslim World, and the role of religion within the Muslim states and place of religion in global politics.展开更多
East Asian summer rainfall is affected by both the continental northern East Asian low (NEAL) and the western North Pacific subtropical high (WNPSH) in the lower troposphere. This study investigates the joint effe...East Asian summer rainfall is affected by both the continental northern East Asian low (NEAL) and the western North Pacific subtropical high (WNPSH) in the lower troposphere. This study investigates the joint effect of the two circulation factors on East Asian summer rainfall. It is found that the rainfall in East Asia behaves differently in the years with in-phase and out-of-phase variation between the NEAL and WNPSH. When the NEAL and WNPSH vary in phase, i.e. when they are both stronger, the rainfall anomaly shows a dipole pattern in East Asia and displays opposite changes between north and south of 30°N. When the two circulation factors vary out of phase, the rainfall anomaly is concentrated in the Yangtze River valley.展开更多
In this study,the reversal of monthly East Asian winter air temperature(EAWT) in 2020/21 and its predictability were investigated.The reversal of monthly EAWT in 2020/21 was characterized by colder temperatures in ear...In this study,the reversal of monthly East Asian winter air temperature(EAWT) in 2020/21 and its predictability were investigated.The reversal of monthly EAWT in 2020/21 was characterized by colder temperatures in early winter(December 2020 to mid-January 2021) and warmer temperatures in late winter(mid-January to February 2021).Results show that the reversal in the intensity of the Siberian high(SH) also occurred between early and late winter in 2020/21.In early winter,as the Barents-Laptev sea ice in the previous September(i.e., in2020) reached a minimum for the period 1981-2020,the SH was strengthaned via a reduction of the meridional gradient between the Arctic and East Asia.In late winter,as a sudden stratospheric warming occurred on 5 January 2021,the stratospheric polar vortex weakened,with the weakest center shifting to North America in January.Subsequently,the negative Arctic Oscillation-like structure shifted towards North America in the middle and lower troposphere,which weakened the SH in late winter.Furthermore,the predictability of the reversal in EAWT in 2020/21 was validated based on monthly and daily predictions from NCEP-CFSv2(National Centers for Environment Prediction-Climate Forecast System,version 2).The results showed that the model was unable to reproduce the monthly reversal of EAWT.However,it was able to forecast the reversal date(18 January 2021)of EAWT at lead times of 1-20 days on the daily scale.展开更多
A key component of the East Asian climate system is seasonally varying monsoon wind. Its interannual and interdecadal variability, as we1l as underlying oceanic processes, is the subject of a recent project completed ...A key component of the East Asian climate system is seasonally varying monsoon wind. Its interannual and interdecadal variability, as we1l as underlying oceanic processes, is the subject of a recent project completed by the Chinese Academy of Sciences. A series of research progress in the areas of monsoon winds, ocean responses, upwelling and productivity has been made and reviewed by this paper.展开更多
The northern edge of the East Asian summer monsoon (EASM) is identified using the pentad total column water vapor obtained from ERA-Interim reanalysis data during 1979-2015.Empirical orthogonal function analysis is ...The northern edge of the East Asian summer monsoon (EASM) is identified using the pentad total column water vapor obtained from ERA-Interim reanalysis data during 1979-2015.Empirical orthogonal function analysis is applied to study the meridional displacement of the northern edge of the EASM during the study period,and the results show an interdecadal southward shift around 1993/1994 and an indistinct northward displacement after 2007/2008.To focus on the interdecadal change around 1993/1994,composite analysis using the difference between 1979-1993 and 1994-2007 is employed.Through examination of the differences between these two periods,a significant anticyclonic anomaly is found over Mongolia,suggesting a pronounced interdecadal weakening of the Mongolian low during 1994-2007.Thus,northward advancement of the EASM may have been prevented by the anomalous northerly flow to the east of the weakened Mongolian low after 1993.Further study shows that the interdecadal weakening of the Mongolian low might be attributable to the meridional inhomogeneity of surface warming over the northern part of East Asia.Previous studies suggest that such meridional inhomogeneity would lead to a reduction in local atmospheric baroclinicity,and thus the suppression of extratropical cyclone activity over Mongolia,resulting in a southward withdrawal of the northern edge of the EASM on the interdecadal timescale.展开更多
基金Supported by Jiangxi Natural Science Fund Program(2009GQN0068)~~
文摘[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.
基金supported by the National Natural Science Foundation of China[grants numbers 41505073 and41605059]the Young Talent Support Program by the China Association for Science and Technology[grant number2016QNRC001]
文摘Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project(CMIP5),evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s,and further projects the evolution of the EAWM–AO relationship during the 21st century.It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models(e.g.,GFDL-ESM2M,GISS-E2-H,and MPI-ESM-MR).The coupled models’simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s.Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO.Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s,and insignificant during the 2060s,but uncertain from the 2030s to the 2050s.
基金supported by the National Basic Research Program of China under Grant No. 973-2007CB- 411807
文摘Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.
基金This work was jointly supported by the National Natural Science Foundation of China[grant numbers 41830969 and 41775052]the National Key R&D Program[grant number 2018YFC1505904]+1 种基金the Basic Scientific Research and Operation Foundation of CAMS[2018Z006 and 2018Y003]It was also supported by the Jiangsu Collaborative Innovation Center for Climate Change.
文摘The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the combined sea level pressure,850-hPa low-level wind,and rainfall fields.The solstitial mode shows a zonal pressure contrast between the continental thermal low and the western Pacific subtropical high,reaching its peak in July and dominating the East Asian summer monsoon.The equinoctial mode shows an approximate zonal contrast between the low-level cyclone over the east of the Tibetan Plateau and the western Pacific anticyclone over the east of the Philippines.It prevails during the spring rainy season in South China and reaches its peak in April.The interannual variations of the lead–lag phase of the two modes may result in the negative correlation of rainfall anomalies in North China between spring and fall and in South China between winter and summer,which provides a potential basis for the across-seasonal prediction of rainfall.The warm phase of ENSO in winter could give rise to the reverse interseasonal rainfall anomalies in South China,while the SST anomaly in the Northwest Pacific Ocean may regulate the rainfall anomaly in North China.
基金supported by the National Basic Research Program of China(973 Program,No.2010CB428904,No.2011CB403606)Natural Science Foundation of China(No.41128006,No.40830854)
文摘Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan:high correlation (r=0.92) with the on-shore volume flux in the lower layer (50 200 m) ;low correlation (r=0.50) with the on-shore flux in the upper layer (0 50 m) .Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162 E by about 14 months,and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves.The intrusion of Kuroshio surface water is also influenced by local winds.The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf.The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath,and northeastward to the region near the 90 m isobath.
基金Supported by the National Basic Research Program of China (973Program) (No. 2012CB417400)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Nifia phase and weakening in the E1 Nifio phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.
基金This research was supported by the Key Laboratory for Cloud Physics of the China Meteorological Administration[grant number 2018Z01612]Department of Finance of Hebei Province[grant number HBRYWCSY_2017_00].
文摘Previous studies have revealed that the relationship between the El Niño-Southern Oscillation(ENSO)and the East Asian winter monsoon(EAWM)is not statistically significant when the Pacific Decadal Oscillation(PDO)is in its positive phase.This study explores a possible way to obtain a robust ENSO-EAWM relationship from a dynamical point of view.Here,the authors show that the East Asian winter temperature is significantly and continuously correlated with ENSO when the linear impact of the PDO has been linearly removed from ENSO.Such a conclusion is confirmed by different reanalysis datasets.The dynamical process intensifying the ENSO-EAWM is further investigated from the perspective of whether or not the atmospheric teleconnection between the Pacific and East Asia has established.Compared to the situation associated with the original ENSO in the positive phase of the PDO,the Walker circulation associated with the processed ENSO,from which the effect of North Pacific climate systems has been removed,tends to exert a more pronounced influence on the atmospheric circulation over the western North Pacific.Consequently,an anomalous anticyclone emerges in the Kuroshio extension.In this sense,the Pacific-East Asian teleconnection is also well established during the positive phase of the PDO,which favors the impact of ENSO on East Asian winter temperature.
基金jointly supported by the China Meteorological Special Projects[grant number GYHY201506013]the National Basic Reaseach Program of China(973)[grant number2015CB453203]+1 种基金the National Natural Science Foundation of China[grant numbers 41405080 and 41375062]partly supported by the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership China as part of the Newton Fund
文摘This study focuses on the interdecadal changes in ENSO properties emerging around the year 2000. Compared to 1980-1999, after 2000, the ENSO amplitude weakened, the occurrence of the central Pacific (CP) Et Nino increased, and the eastern Pacific (EP) El Nino became suppressed. Meanwhile, the dominant period of ENSO shortened from quasi-quadrennial (QQ) to quasi-biennial (QB). The authors show that these changes in ENSO properties are evidently consistent with the change in the stability of the ENSO mode through connecting the two ENSO types with the two coupled ENSO modes, i.e. the QQ and QB modes. It is suggested that the relative activity or stability of the two ENSO modes changed after the year 2000. The intensity of both the QQ and QB mode weakened. The QQ mode, which is linked to EP ENSO and was significantly strong during 1980-1999, became much weaker after 2000 in terms of the EP type almost disappearing. Compared with the weakness of the QQ mode, the QB mode, as manifested by the CP type, remained active and became dominant in the tropical Pacific after 2000. Analysis shows that the changes in mean states in the tropical Pacific were likely responsible for the interdecadal ENSO changes around the year 2000.
基金This study was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant numbers 41675083 and 41991281].
文摘Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.
基金supported by the National Basic Research Program of China (973 program,Grant No.2010CB950502)the National Natural Science Foundation of China (Grant Nos.40975065 and 40821092)
文摘This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.
基金supported by the National Basic Research Program of China(Grant No.2009CB421401)the Research Council of Norway through the DecCen project(Exploring Decadal to Century Scale Variability and Changes in the East Asian Climate during the last Millennium)
文摘This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern flood and Northern drought(SFND)"summer rainfall pattern over East China.The mechanism behind this contribution is also discussed.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.
基金supported by the Chinese Acad-emy of Sciences (XDA05110303)the National Basic Research Program of China (973 Program,2012CB417203)the National Natural Science Foundation of China (40805038 and 41023002)
文摘Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.
文摘This work traces the historical development and impact of political Islam on international relations (IR) from the last century to date. In this article the author asserts that understanding the rise of political Islam at the world's stage and IR generally can be genealogically traced to two interrelated developments: the rise of the Muslim Brotherhood (MB) in Egypt since 1928 as a social and political movement against the growing Western influence in the Islamic World after the collapse of the ottoman empire; and the development of the post-World War II IR theories, and practices which provided the basis of the political, military, and security doctrines of the United States and its allies which proved its lack of reliability and validity, particularly as related to the Muslim World, and the role of religion within the Muslim states and place of religion in global politics.
基金supported by the National Natural Science Foundation of China[grant number 41375086]
文摘East Asian summer rainfall is affected by both the continental northern East Asian low (NEAL) and the western North Pacific subtropical high (WNPSH) in the lower troposphere. This study investigates the joint effect of the two circulation factors on East Asian summer rainfall. It is found that the rainfall in East Asia behaves differently in the years with in-phase and out-of-phase variation between the NEAL and WNPSH. When the NEAL and WNPSH vary in phase, i.e. when they are both stronger, the rainfall anomaly shows a dipole pattern in East Asia and displays opposite changes between north and south of 30°N. When the two circulation factors vary out of phase, the rainfall anomaly is concentrated in the Yangtze River valley.
基金jointly supported by the National Natural Science Foundation of China [grant numbers 42088101 and 41730964]the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) [grant number 311021001]。
文摘In this study,the reversal of monthly East Asian winter air temperature(EAWT) in 2020/21 and its predictability were investigated.The reversal of monthly EAWT in 2020/21 was characterized by colder temperatures in early winter(December 2020 to mid-January 2021) and warmer temperatures in late winter(mid-January to February 2021).Results show that the reversal in the intensity of the Siberian high(SH) also occurred between early and late winter in 2020/21.In early winter,as the Barents-Laptev sea ice in the previous September(i.e., in2020) reached a minimum for the period 1981-2020,the SH was strengthaned via a reduction of the meridional gradient between the Arctic and East Asia.In late winter,as a sudden stratospheric warming occurred on 5 January 2021,the stratospheric polar vortex weakened,with the weakest center shifting to North America in January.Subsequently,the negative Arctic Oscillation-like structure shifted towards North America in the middle and lower troposphere,which weakened the SH in late winter.Furthermore,the predictability of the reversal in EAWT in 2020/21 was validated based on monthly and daily predictions from NCEP-CFSv2(National Centers for Environment Prediction-Climate Forecast System,version 2).The results showed that the model was unable to reproduce the monthly reversal of EAWT.However,it was able to forecast the reversal date(18 January 2021)of EAWT at lead times of 1-20 days on the daily scale.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘A key component of the East Asian climate system is seasonally varying monsoon wind. Its interannual and interdecadal variability, as we1l as underlying oceanic processes, is the subject of a recent project completed by the Chinese Academy of Sciences. A series of research progress in the areas of monsoon winds, ocean responses, upwelling and productivity has been made and reviewed by this paper.
基金supported by National Key Basic Research and Development Projects of China[grant number 2016YFA0600601]the National Natural Science Foundation of China[grant numbers 41530503,41405045,and 41605027]
文摘The northern edge of the East Asian summer monsoon (EASM) is identified using the pentad total column water vapor obtained from ERA-Interim reanalysis data during 1979-2015.Empirical orthogonal function analysis is applied to study the meridional displacement of the northern edge of the EASM during the study period,and the results show an interdecadal southward shift around 1993/1994 and an indistinct northward displacement after 2007/2008.To focus on the interdecadal change around 1993/1994,composite analysis using the difference between 1979-1993 and 1994-2007 is employed.Through examination of the differences between these two periods,a significant anticyclonic anomaly is found over Mongolia,suggesting a pronounced interdecadal weakening of the Mongolian low during 1994-2007.Thus,northward advancement of the EASM may have been prevented by the anomalous northerly flow to the east of the weakened Mongolian low after 1993.Further study shows that the interdecadal weakening of the Mongolian low might be attributable to the meridional inhomogeneity of surface warming over the northern part of East Asia.Previous studies suggest that such meridional inhomogeneity would lead to a reduction in local atmospheric baroclinicity,and thus the suppression of extratropical cyclone activity over Mongolia,resulting in a southward withdrawal of the northern edge of the EASM on the interdecadal timescale.