The present study reports a novel strategy to fabricate nanocrystal-assembled hierarchical MOR zeolites. This is the first demonstration of hierarchical MOR without preferential growth along the c-axis, which facilita...The present study reports a novel strategy to fabricate nanocrystal-assembled hierarchical MOR zeolites. This is the first demonstration of hierarchical MOR without preferential growth along the c-axis, which facilitates mass transfer in the 12-membered ring channels of MOR zeolite for the conversions involving bulky molecules. The facile method involves the combined use of tetraethylammonium hydroxide (TEAOH) and commercial surfactants, in which TEAOH is essential for the construction of nanocrystal assemblies. The surfactant serves as a crystal growth-inhibiting agent to further inhibit nanocrystalline particle growth, resulting in enhanced mesoporosity. The hierarchical MOR assembled particles, constructed of 20-50-nm crystallites, exhibit superior catalytic properties in the alkylation of benzene with benzyl alcohol compared with the control sample, as the hierarchical MOR possesses a larger external surface area and longer c-axis dimension. More importantly, the material shows improved activity and stability in the dimethyl ether carbonylation to methyl acetate reaction, which is a novel route to produce ethanol from syngas.展开更多
In order to test the control effect of 6% tebuconazole FS on maize head smut and to select its optimal dose for mixing seed, field tests were performed in 2012 and 2013. The results showed that 6% tebuconazole FS was ...In order to test the control effect of 6% tebuconazole FS on maize head smut and to select its optimal dose for mixing seed, field tests were performed in 2012 and 2013. The results showed that 6% tebuconazole FS was effective to control maize head smut, and the control effect ranged from 73.4% to 91.1%. In addition, it also improved the maize yield by 36.7%-44.1%, compared with the blank control. The optimal dose of 6% tebuconazole FS for seed dressing was 166.5 g/100 kg to control head smut on maize.展开更多
A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully de...A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film.展开更多
The discovery of the high activity and selectivity of boron-based catalysts for oxidative dehydrogenation(ODH)of alkanes to olefins has attracted significant attention in the exploration of a new method for the synthe...The discovery of the high activity and selectivity of boron-based catalysts for oxidative dehydrogenation(ODH)of alkanes to olefins has attracted significant attention in the exploration of a new method for the synthesis of highly active and selective catalysts.Herein,we describe the synthesis of porous boron-doped silica nanofibers(PBSNs)100-150 nm in diameter by electrospinning and the study of their catalytic performance.The electrospinning synthesis of the catalyst ensures the uniform dispersion and stability of the boron species on the open silica fiber framework.The one-dimensional nanofibers with open pore structures not only prevented diffusion limitation but also guaranteed high catalytic activity at high weight hourly space velocity(WHSV)in the ODH of alkanes.Compared to other supported boron oxide catalysts,PBSN catalysts showed higher olefin selectivity and stability.The presence of Si-OH groups in silica-supported boron catalysts may cause low propylene selectivity during the ODH of propane.When the ODH conversion of ethane reached 44.3%,the selectivity and productivity of ethylene were 84%and 44.2%g_(cat)^(-1)s^(-1),respectively.In the case of propane ODH,the conversion,selectivity of olefins,and productivity of propylene are 19.2%,90%,and 76.6 jimol g_(cat)^(-1)s^(-1),respectively.No significant variations in the conversion and product selectivity occurred during 20 h of operation at a high WHSV of 84.6 h^(-1).Transient analysis and kinetic experiments indicated that the activation of O2 was influenced by alkanes during the ODH reaction.展开更多
A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in...A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater.展开更多
The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted...The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.展开更多
Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The ...Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The morphologies of template and copper nano-wires arrays were characterized by means of field emission scanning electron microscope (FESEM) and the crystal structure of copper nano-wires was determined by means of X-ray diffraction. The results indicate that copper nano-wires hold the preferred crystalline orientation along (111), (200), (220) and (331) crystal faces during growth, and the growth of copper nano-wires in the nano-holes of the template is homogenous and continuous.展开更多
SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensi...SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.展开更多
The Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox(x=0,1,2,3,4,%,mass fraction) were prepared by melt-spinning technology.The structures of the alloys were studied by XRD,SEM and HRTEM.The hydrogen absor...The Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox(x=0,1,2,3,4,%,mass fraction) were prepared by melt-spinning technology.The structures of the alloys were studied by XRD,SEM and HRTEM.The hydrogen absorption/desorption kinetics and the electrochemical performances of the alloys were measured.The results show that no amorphous phase forms in the as-spun Co-free alloy,but the as-spun alloys containing Co show a certain amount of amorphous phase.The hydrogen absorption capacities of the as-cast alloys first increase and then decrease with the incremental change of Co content.The hydrogen desorption capacities of as-cast and spun alloys rise with increasing Co content.The melt spinning significantly improves the hydrogenation and dehydrogenation capacities and kinetics of the alloys.The substitution of Co for Ni clearly enhances the discharge capacities of the alloys and the cycle stability of the as-spun alloys.展开更多
The synthesis and catalytic properties of copper nanoparticles(Cunps) were reported using L-ascorbic acid as reducing and capping agent in aqueous medium. The effect of different concentrations of L-ascorbic acid on...The synthesis and catalytic properties of copper nanoparticles(Cunps) were reported using L-ascorbic acid as reducing and capping agent in aqueous medium. The effect of different concentrations of L-ascorbic acid on the particle size of Cunps was investigated. The synthesized Cunps were characterized by UV-Visible spectrophotometer, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Fourier transform infrared(FTIR) spectrophotometer. The result indicates that the size of copper nanoparticles decreases with the increase in concentration of L-ascorbic acid. L-Ascorbic acid plays an important role to protect the copper nanoparticles from oxidation and agglomeration which helps nanoparticles to get better stability for the application. The synthesized Cunps show excellent catalytic activity in the oxidation of serine(Ser) by peroxomonosulphate(PMS). The catalytic activity of Cunps increases with the decrease in size of Cunps. The Cunps are expected to be suitable alternative and play an imperative role in the fields of catalysis and environmental remediation.展开更多
基金supported by the National Natural Science Foundation of China(21101150,21476228,21473182)~~
文摘The present study reports a novel strategy to fabricate nanocrystal-assembled hierarchical MOR zeolites. This is the first demonstration of hierarchical MOR without preferential growth along the c-axis, which facilitates mass transfer in the 12-membered ring channels of MOR zeolite for the conversions involving bulky molecules. The facile method involves the combined use of tetraethylammonium hydroxide (TEAOH) and commercial surfactants, in which TEAOH is essential for the construction of nanocrystal assemblies. The surfactant serves as a crystal growth-inhibiting agent to further inhibit nanocrystalline particle growth, resulting in enhanced mesoporosity. The hierarchical MOR assembled particles, constructed of 20-50-nm crystallites, exhibit superior catalytic properties in the alkylation of benzene with benzyl alcohol compared with the control sample, as the hierarchical MOR possesses a larger external surface area and longer c-axis dimension. More importantly, the material shows improved activity and stability in the dimethyl ether carbonylation to methyl acetate reaction, which is a novel route to produce ethanol from syngas.
文摘In order to test the control effect of 6% tebuconazole FS on maize head smut and to select its optimal dose for mixing seed, field tests were performed in 2012 and 2013. The results showed that 6% tebuconazole FS was effective to control maize head smut, and the control effect ranged from 73.4% to 91.1%. In addition, it also improved the maize yield by 36.7%-44.1%, compared with the blank control. The optimal dose of 6% tebuconazole FS for seed dressing was 166.5 g/100 kg to control head smut on maize.
文摘A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film.
文摘The discovery of the high activity and selectivity of boron-based catalysts for oxidative dehydrogenation(ODH)of alkanes to olefins has attracted significant attention in the exploration of a new method for the synthesis of highly active and selective catalysts.Herein,we describe the synthesis of porous boron-doped silica nanofibers(PBSNs)100-150 nm in diameter by electrospinning and the study of their catalytic performance.The electrospinning synthesis of the catalyst ensures the uniform dispersion and stability of the boron species on the open silica fiber framework.The one-dimensional nanofibers with open pore structures not only prevented diffusion limitation but also guaranteed high catalytic activity at high weight hourly space velocity(WHSV)in the ODH of alkanes.Compared to other supported boron oxide catalysts,PBSN catalysts showed higher olefin selectivity and stability.The presence of Si-OH groups in silica-supported boron catalysts may cause low propylene selectivity during the ODH of propane.When the ODH conversion of ethane reached 44.3%,the selectivity and productivity of ethylene were 84%and 44.2%g_(cat)^(-1)s^(-1),respectively.In the case of propane ODH,the conversion,selectivity of olefins,and productivity of propylene are 19.2%,90%,and 76.6 jimol g_(cat)^(-1)s^(-1),respectively.No significant variations in the conversion and product selectivity occurred during 20 h of operation at a high WHSV of 84.6 h^(-1).Transient analysis and kinetic experiments indicated that the activation of O2 was influenced by alkanes during the ODH reaction.
基金Project(18B195)supported by Excellent Youth Project of Hunan Education Department,ChinaProjects(51804353,51704093)supported by the National Natural Science Foundation of China+2 种基金Project(kq1801074)supported by Key Projects of Changsha Science and Technology Plan,ChinaProject(2018JJ4010)supported by Hunan Provincial Natural Science Foundation of China(Joint Funds of Provincial and Zhuzhou Municipal)Project(2018JJ3885)supported by Natural Science Foundation of Hunan Province of China(Science Foundation for Youths)。
文摘A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater.
基金Jiangsu Province Project of Postgraduate Innovation Engineering,China(No.CXZZ12_0821)Industry-academic Joint Technological Innovations Fund Project of Jiangsu Province,China(No.BY2012120)Suzhou Project of Scientific and Technical Supporting,China(No.ZXS2012001)
文摘The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.
文摘Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The morphologies of template and copper nano-wires arrays were characterized by means of field emission scanning electron microscope (FESEM) and the crystal structure of copper nano-wires was determined by means of X-ray diffraction. The results indicate that copper nano-wires hold the preferred crystalline orientation along (111), (200), (220) and (331) crystal faces during growth, and the growth of copper nano-wires in the nano-holes of the template is homogenous and continuous.
基金This work was supported by the National Natural Science Foundation of China (No.U1432108) and the Fundamental Research Funds for the Central Universities (No.WK2320000034).
文摘SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.
基金Project(2006AA05Z132) supported by the National High-tech Research and Development Program of ChinaProjects(50871050,50701011) supported by the National Natural Science Foundation of China+1 种基金Project(200711020703) supported by Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071) supported by High Education Science Research Program of Inner Mongolia,China
文摘The Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox(x=0,1,2,3,4,%,mass fraction) were prepared by melt-spinning technology.The structures of the alloys were studied by XRD,SEM and HRTEM.The hydrogen absorption/desorption kinetics and the electrochemical performances of the alloys were measured.The results show that no amorphous phase forms in the as-spun Co-free alloy,but the as-spun alloys containing Co show a certain amount of amorphous phase.The hydrogen absorption capacities of the as-cast alloys first increase and then decrease with the incremental change of Co content.The hydrogen desorption capacities of as-cast and spun alloys rise with increasing Co content.The melt spinning significantly improves the hydrogenation and dehydrogenation capacities and kinetics of the alloys.The substitution of Co for Ni clearly enhances the discharge capacities of the alloys and the cycle stability of the as-spun alloys.
文摘The synthesis and catalytic properties of copper nanoparticles(Cunps) were reported using L-ascorbic acid as reducing and capping agent in aqueous medium. The effect of different concentrations of L-ascorbic acid on the particle size of Cunps was investigated. The synthesized Cunps were characterized by UV-Visible spectrophotometer, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Fourier transform infrared(FTIR) spectrophotometer. The result indicates that the size of copper nanoparticles decreases with the increase in concentration of L-ascorbic acid. L-Ascorbic acid plays an important role to protect the copper nanoparticles from oxidation and agglomeration which helps nanoparticles to get better stability for the application. The synthesized Cunps show excellent catalytic activity in the oxidation of serine(Ser) by peroxomonosulphate(PMS). The catalytic activity of Cunps increases with the decrease in size of Cunps. The Cunps are expected to be suitable alternative and play an imperative role in the fields of catalysis and environmental remediation.