The surfactant-coated Candida rugosa lipase was used as catalyst for hydrolysis of olive oil in two-phase system consisting of olive oil and phosphate buffer without organic solvent. For both the coated and native lip...The surfactant-coated Candida rugosa lipase was used as catalyst for hydrolysis of olive oil in two-phase system consisting of olive oil and phosphate buffer without organic solvent. For both the coated and native lipases,the optimal buffer/oil volume ratio of 1.0, aqueous pH 6.8 and reaction temperature 30℃ were determined. The maximum activity of the coated lipase was ca 1.3 times than that of the native lipase. The half-life of the coated lipase in olive oil and the native lipase in phosphate buffer was ca 9 h and 12 h, and the final residual activity was 27% and 20% of their initial values, respectively. The final substrate conversion by the coated lipase was ca 20% higher than that of the native lipase.展开更多
Quantitative representation of complicated behavior of fluid mixtures in the critical region by any of equation-of-state theories re-mains as a difficult thermodynamic topics to date. In the present work, a computatio...Quantitative representation of complicated behavior of fluid mixtures in the critical region by any of equation-of-state theories re-mains as a difficult thermodynamic topics to date. In the present work, a computational efforts were made for representing various types of critical loci of binary water with hydrocarbon systems showing Type II and Type III phase behavior by an elementary equation of state [called multi-fluid nonrandom lattice fluid EOS (MF-NLF EOS)] based on the lattice statistical mechanical theory. The model EOS requires two mo-lecular parameters which representing molecular size and interaction energy for a pure component and single adjustable interaction energy pa-rameter for binary mixtures. Critical temperature and pressure data were used to obtain molecular size parameter and vapor pressure data were used to obtain interaction energy parameter. The MF-NLF EOS model adapted in the present study correlated quantitatively well the critical loci of various binary water with hydrocarbon systems.展开更多
基金National Natural Science Foundation of China(No.29876031)
文摘The surfactant-coated Candida rugosa lipase was used as catalyst for hydrolysis of olive oil in two-phase system consisting of olive oil and phosphate buffer without organic solvent. For both the coated and native lipases,the optimal buffer/oil volume ratio of 1.0, aqueous pH 6.8 and reaction temperature 30℃ were determined. The maximum activity of the coated lipase was ca 1.3 times than that of the native lipase. The half-life of the coated lipase in olive oil and the native lipase in phosphate buffer was ca 9 h and 12 h, and the final residual activity was 27% and 20% of their initial values, respectively. The final substrate conversion by the coated lipase was ca 20% higher than that of the native lipase.
文摘Quantitative representation of complicated behavior of fluid mixtures in the critical region by any of equation-of-state theories re-mains as a difficult thermodynamic topics to date. In the present work, a computational efforts were made for representing various types of critical loci of binary water with hydrocarbon systems showing Type II and Type III phase behavior by an elementary equation of state [called multi-fluid nonrandom lattice fluid EOS (MF-NLF EOS)] based on the lattice statistical mechanical theory. The model EOS requires two mo-lecular parameters which representing molecular size and interaction energy for a pure component and single adjustable interaction energy pa-rameter for binary mixtures. Critical temperature and pressure data were used to obtain molecular size parameter and vapor pressure data were used to obtain interaction energy parameter. The MF-NLF EOS model adapted in the present study correlated quantitatively well the critical loci of various binary water with hydrocarbon systems.