The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert...The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.展开更多
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic...Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle.展开更多
A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–...A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–6000 Da), p H(4.0–7.0), percentage of PEG(10.0–20.0 w/w), percentage of MgSO_4(8.0–16.0 w/w), percentage of the cell homogenate(10.0–20.0 w/w) and the percentage of MnSO_4(0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting(AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules.展开更多
Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A mode...Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.展开更多
The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states ...The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states |N, 0〉 and [0, N〉, and the NOON states of arbitrary ultracold atoms can therefore be generated periodically from the initial state of either one of the Foek states.展开更多
The paper presents a simplified numerical model of evaporation processes inside vertical tubes.In this model only the temperature fields in the fluid domain(the liquid or two-phase mixture) and solid domain(a tube wal...The paper presents a simplified numerical model of evaporation processes inside vertical tubes.In this model only the temperature fields in the fluid domain(the liquid or two-phase mixture) and solid domain(a tube wall) are determined.Therefore its performance and efficiency is high.The analytical formulas,which allow calculating the pressure drop and the distribution of heat transfer coefficient along the tube length,are used in this model.The energy equation for the fluid domain is solved with the Control Volume Method and for the solid domain with the Finite Element Method in order to determine the temperature field for the fluid and solid domains.展开更多
文摘The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
文摘Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle.
基金CAPES and Brazilian National Council of Research (CNPq) (Grant 407684/2013-1) for the financial support
文摘A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–6000 Da), p H(4.0–7.0), percentage of PEG(10.0–20.0 w/w), percentage of MgSO_4(8.0–16.0 w/w), percentage of the cell homogenate(10.0–20.0 w/w) and the percentage of MnSO_4(0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting(AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules.
基金Supported by the National Natural Science Foundation of China.
文摘Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.60478029,10575040,10634060,and 90503010the National Fundamental Research Program of China under Grant No.2005CB724508
文摘The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states |N, 0〉 and [0, N〉, and the NOON states of arbitrary ultracold atoms can therefore be generated periodically from the initial state of either one of the Foek states.
文摘The paper presents a simplified numerical model of evaporation processes inside vertical tubes.In this model only the temperature fields in the fluid domain(the liquid or two-phase mixture) and solid domain(a tube wall) are determined.Therefore its performance and efficiency is high.The analytical formulas,which allow calculating the pressure drop and the distribution of heat transfer coefficient along the tube length,are used in this model.The energy equation for the fluid domain is solved with the Control Volume Method and for the solid domain with the Finite Element Method in order to determine the temperature field for the fluid and solid domains.