Based on the gas-liquid two-phase mixture transportation test, the k-c-A; turbulence model was applied to simulate the two-phase turbulent flow in a vortex pump. By comparing the simulation and experiment results, inn...Based on the gas-liquid two-phase mixture transportation test, the k-c-A; turbulence model was applied to simulate the two-phase turbulent flow in a vortex pump. By comparing the simulation and experiment results, inner flow features were revealed. The bubbles in the channel distribute mainly at the pressure side of the blades, and the aggregation degree of the bubbles is enhanced with an increase in inlet gas volume fraction. Experimental results indicate that the influence of the gas phase on vortex pump performance is small when the gas volume fraction is less than 10%. When the gas volume fraction contiuuously increases to 15%, the characteristic curves abruptly drop due to the gas blocking phenomenon.展开更多
基金supported by the National Natural Science Foundation of China (No50879080, No 50609025 and No 50735004)Zhejiang Provincial Key Science Foundation of China (No2008C01024-1 and No2008C21023)
文摘Based on the gas-liquid two-phase mixture transportation test, the k-c-A; turbulence model was applied to simulate the two-phase turbulent flow in a vortex pump. By comparing the simulation and experiment results, inner flow features were revealed. The bubbles in the channel distribute mainly at the pressure side of the blades, and the aggregation degree of the bubbles is enhanced with an increase in inlet gas volume fraction. Experimental results indicate that the influence of the gas phase on vortex pump performance is small when the gas volume fraction is less than 10%. When the gas volume fraction contiuuously increases to 15%, the characteristic curves abruptly drop due to the gas blocking phenomenon.