期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
两部分因子分析模型的贝叶斯推断 被引量:4
1
作者 夏业茂 凌耀斌 熊双粲 《应用数学》 CSCD 北大核心 2018年第4期761-778,共18页
半连续数据在经济和社会科学调查中普遍存在.在分析该类数据时,经典两部分回归模型经常被用来刻画协变量对响应变量可变性的影响.然而,包含协变量并不能完全解释响应变量的可变性.忽略未被观测的数据异质性将导致方差的剧烈波动.在本文... 半连续数据在经济和社会科学调查中普遍存在.在分析该类数据时,经典两部分回归模型经常被用来刻画协变量对响应变量可变性的影响.然而,包含协变量并不能完全解释响应变量的可变性.忽略未被观测的数据异质性将导致方差的剧烈波动.在本文中,我们将两部分回归模型推广到两部分因子分析模型.多变量半连续数据未观测的异质性由潜在因子部分来解释.此外,通过引入潜在性因子,多重变量间的相依性也以线性组合方式通过共享因子变量得到刻画.在贝叶斯框架内,我们运用马尔可夫链蒙特卡洛(MCMC)方法来进行后验分析.GIBBS采样器被用于从后验分布中抽取样本.基于模拟的随机样本,未知参数估计和模型评价等统计推断问题获得解决.随机模拟和可卡因使用数据分析等实证结果显示了该方法的有效性和实用性. 展开更多
关键词 两部分因子分析模型 马尔可夫链蒙特卡洛 GIBBS抽样器 未知异质性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部