We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1...We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11171351)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120162110021)
文摘We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.