现有大多数基于位置服务(location based service,LBS)的隐私保护算法都将对用户位置隐私的保护等同于对整个LBS查询服务隐私的保护.但是,在用户位置信息已知的前提下,这些算法有可能面临推断攻击.在考虑用户个性化隐私需求的情况下,基...现有大多数基于位置服务(location based service,LBS)的隐私保护算法都将对用户位置隐私的保护等同于对整个LBS查询服务隐私的保护.但是,在用户位置信息已知的前提下,这些算法有可能面临推断攻击.在考虑用户个性化隐私需求的情况下,基于四分树结构提出了能够避免此类推断攻击的隐私保护算法;为了有效的减小隐惹区域的大小基于半象限的定义对该算法进行了进一步优化.最后,通过仿真实验验证了算法抵御推理攻击的有效性.展开更多
随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下...随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下,满足用户个性化隐私需求.首先,定义归一化的决策矩阵,描述导航推荐路线的效率和隐私效果;然后,引入多属性理论,建立效用模型,将用户的隐私偏好整合到该模型中,为用户选择效益最佳的驾驶路线;最后,考虑到用户的隐私偏好需求,以距离占比为衡量指标,为用户分配合适的隐私预算,并确定虚假位置的生成范围,以生成效用最高的服务请求位置.基于真实数据集,通过仿真实验,将所提方案与现有方案进行对比,实验结果表明:所提出的个性化位置隐私保护方案在合理保护用户隐私的情况下,能够满足用户的服务需求,以提供更高的服务质量(quality of service,QoS).展开更多
文摘现有大多数基于位置服务(location based service,LBS)的隐私保护算法都将对用户位置隐私的保护等同于对整个LBS查询服务隐私的保护.但是,在用户位置信息已知的前提下,这些算法有可能面临推断攻击.在考虑用户个性化隐私需求的情况下,基于四分树结构提出了能够避免此类推断攻击的隐私保护算法;为了有效的减小隐惹区域的大小基于半象限的定义对该算法进行了进一步优化.最后,通过仿真实验验证了算法抵御推理攻击的有效性.
文摘随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下,满足用户个性化隐私需求.首先,定义归一化的决策矩阵,描述导航推荐路线的效率和隐私效果;然后,引入多属性理论,建立效用模型,将用户的隐私偏好整合到该模型中,为用户选择效益最佳的驾驶路线;最后,考虑到用户的隐私偏好需求,以距离占比为衡量指标,为用户分配合适的隐私预算,并确定虚假位置的生成范围,以生成效用最高的服务请求位置.基于真实数据集,通过仿真实验,将所提方案与现有方案进行对比,实验结果表明:所提出的个性化位置隐私保护方案在合理保护用户隐私的情况下,能够满足用户的服务需求,以提供更高的服务质量(quality of service,QoS).