期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
国产MAN L16/24型柴油机故障多发应对方案
1
作者 张弦 《航海》 2018年第4期48-50,共3页
结合国产MAN L16/24型柴油机在实际使用中发现的问题及解决办法,提出降低该型柴油机故障率的系统方案,供大家参考。
关键词 MAN L16/24型柴油机 共性故障 个性故障 运行管理大修间隔周期 管理建议
下载PDF
电控车电路故障的“共性”与“个性”
2
作者 巩静 《汽车维护与修理》 2000年第12期4-4,共1页
电控车的电路故障可谓是千变万化。虽然无规律可寻,但其中的多数属于“共性”故障,即不论在何种型号的车辆上,故障原因与故障现象是一一对应的,且相同的故障具有相同的故障现象,合格的汽车电器维修工均能凭经验来排除。
关键词 车用电控电路 “共性”故障 个性故障 故障分析
原文传递
Nonlinear industrial process fault diagnosis with latent label consistency and sparse Gaussian feature learning
3
作者 LI Xian-ling ZHANG Jian-feng +2 位作者 ZHAO Chun-hui DING Jin-liang SUN You-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3956-3973,共18页
With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficient... With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficiently extract deep meaningful features that are crucial for fault diagnosis, a sparse Gaussian feature extractor(SGFE) is designed to learn a nonlinear mapping that projects the raw data into the feature space with the fault label dimension. The feature space is described by the one-hot encoding of the fault category label as an orthogonal basis. In this way, the deep sparse Gaussian features related to fault categories can be gradually learned from the raw data by SGFE. In the feature space,the sparse Gaussian(SG) loss function is designed to constrain the distribution of features to multiple sparse multivariate Gaussian distributions. The sparse Gaussian features are linearly separable in the feature space, which is conducive to improving the accuracy of the downstream fault classification task. The feasibility and practical utility of the proposed SGFE are verified by the handwritten digits MNIST benchmark and Tennessee-Eastman(TE) benchmark process,respectively. 展开更多
关键词 nonlinear fault diagnosis multiple multivariate Gaussian distributions sparse Gaussian feature learning Gaussian feature extractor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部