Black bedded, nodular, and lenticular chert and silicified parts of stromatolites from the approximately 1 400 - 1 600 million year-old Gaoyuzhuang Formation, North China, contain remark-ably well prep served microflo...Black bedded, nodular, and lenticular chert and silicified parts of stromatolites from the approximately 1 400 - 1 600 million year-old Gaoyuzhuang Formation, North China, contain remark-ably well prep served microflora composed of diverse prokaryotic and possible eukaryotic microbes. Macroscopic algae have also been found. This Formation provides important paleobiological information from which to assess status of Mesoproterozoic life, and to evaluate paleoenvironmental conditions and pre-Phanerozoic biostratigraphy. The Gaoyuzhuang Formation has yielded over 100 taxa described by over 10 investigators. Most of the microbial taxa can be divided into three different assemblages according to their paleobiological and paleoenvironmental characteristics. I. The oscillatoriacean/chroococcacean assemblage which occurs in the first member of the Formation and this is interpreted to represent an assemblage from shallow water mat-building and mat-dwelling taxa with some possible planktonic taxa; 2. the nostocacean assemblage found only in the second member, and includes benthic mat-building or mat-dwelling taxa; and 3. the chroococcacean assemblage of the fourth member, which represents intertidal to supratidal mat-building and allochthonous taxa. Proterozoic microfossils found in chert, especially cyanobacteria, are possibly more valuable as paleoenvironmental indicators than as chronostratigraphic tools because of their morphological conservation, although trends in diversity appear to exist for cyanobacteria in the Proterozoic. The general characteristics of Gaoyuzhuang microfossils, and the fact that most nostocacean chains occur and are. preserved with the chain perpendicular to bedding indicate that: (1) the individual size of Gaoyuzhuang microfossils are part of a general trend of increase with time; (2) Gaoyuzhuang deposits are possibly in a fresh water environment and the rate of sedimentation might be equal to or less than the microbial growth rate; (3) the sedimentary model of Gaoyuzhuang might be from intertidal to subtidal or deep sea, and then to intertidal or supratidal; and (4) the eukaryotic organisms had densely occurred when Gaoyuzhuang Formation deposited.展开更多
The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor...The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential.展开更多
Late Paleozoic strata in northeastern China are distributed in a zonal pattern around the old-land on the Jiamusi-Mongolia Block. They are composed of active deposits in the regular distributed tectonic lithofacies zo...Late Paleozoic strata in northeastern China are distributed in a zonal pattern around the old-land on the Jiamusi-Mongolia Block. They are composed of active deposits in the regular distributed tectonic lithofacies zones. This indicates that the late Paleozoic strata belong to continental margin deposits. According to the strong conformability of the sedimentary strata in the same continental margin and distinct differences among the three continental margins, three stratigraphical regions of the Jiamusi-Mongolia Stratigraphical Province are recognized along the northern, southern and eastern margins of the Jiamusi-Mongolia Block, named respectively as Xing'an Stratigraphical Region, Inner Mongolia grass-Songhua River Stratigraphical Region and Baoqing-Hunchun Stra- tigraphical Region. Due to the characteristics of continental margin deposits and active sediments, the strata can be correlated on the level of formation by the methods of analysing the rock association in the same stratigraphic region. Therefore, some revisions of the lithologieal formations of the late Paleozoic strata in northeastern China have been made, and a new chart of lithostratigraphic correlation has been proposed. Furthermore, the present stratigraphic framework is setting on the International Stratigraphic Chart on the level of stage, after comprehen- sive researches to lithostratigraphy, biostratigraphy and chronostratigraphy, especially the conodont biostratigra- phy and isotopic ages of volcanic rocks obtained in recent years.展开更多
Three new species of fossil woods are reported from the Upper,Jurassic to Lower Cretaceous in southeastern Mongolia, including Protaxodioxylon mongolense sp. nov. Circoporoxylon mongolen.;e sp. nov. Protocircoporoylon...Three new species of fossil woods are reported from the Upper,Jurassic to Lower Cretaceous in southeastern Mongolia, including Protaxodioxylon mongolense sp. nov. Circoporoxylon mongolen.;e sp. nov. Protocircoporoylon mongolense sp. nov. The anatomical characters of three new species are described in detail.展开更多
According to the characteristics of sedimentary facies and their vertical associations, sequence association of sedimentary facies can be divided into 2 types and 28 subtypes. The first type(type A)is a sedimentary se...According to the characteristics of sedimentary facies and their vertical associations, sequence association of sedimentary facies can be divided into 2 types and 28 subtypes. The first type(type A)is a sedimentary sequence without volcanic rocks, including 18 subtypes. The second type(type B)is a volcanogenic succession including 10 subtypes. Each subtype may reflect certain filling condition under certain sedimentary environment. Time and space distribution of different types of sequence associations can reflect tectonics that controlled the basin evolution, sedimentary environments and palaeogeography.展开更多
The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geol...The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geological history. This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem, prompted its transition to Mesozoic ecosystem, and induced coal gap on land as well as reef gap and chert gap in ocean. The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere. The event sequence at the Permian-Triassic boundary (PTB) reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass ex- tinction and the intimate relationship between them. The severe global changes coupling multiple geospheres may have affect- ed the Pangea integration on the Earth's surface spheres, which include: the Pangea integration→enhanced mountain height and basin depth, changes of wind and ocean current systems; enhanced ocean basin depth→the greatest Phanerozoic regression at PTB, disappearance of epeiric seas and subsequent rapid transgression; the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism; two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap (25%251 Ma)→global warming and mass extinction; continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation; enhanced weathering and CH4 emission→negative excursion of δ^13C; mantle plume→crust doming→regression; possible relation between the Illawarra magnetic reversal and the PTB extinction, and so on. Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration. Subduction, delamination, and accumulation of the earth's cool lithospheric material at the "D" layer of CMB started mantle plume by heat compensation and disturbed the outer core ther- too-convection, and the latter in turn would generate the mid-Permian geomagnetic reversal. These core and mantle perturbations may have caused the Pangea integration and two successive LIPs in the Permian, and probably finally the mass extinction at the PTB.展开更多
The Chinese Tianshan belt is a major part of the southern Central Asian Orogenic Belt, extending westward to Kyrgyzstan and Kazakhstan. Its Paleozoic tectonic evolution, crucial for understanding the amalgamation of C...The Chinese Tianshan belt is a major part of the southern Central Asian Orogenic Belt, extending westward to Kyrgyzstan and Kazakhstan. Its Paleozoic tectonic evolution, crucial for understanding the amalgamation of Central Asia, comprises two stages of subduction-collision. The first collisional stage built the Eo-Tianshan Mountains, before a Visean unconformity, in which all structures are verging north. It implied a southward subduction of the Central Tianshan Ocean beneath the Tarim active margin, that induced the Ordovician-Early Devonian Central Tianshan arc, to the south of which the South Tianshan back-arc basin opened. During the Late Devonian, the closure of this ocean led to a collision between Central Tianshan arc and the Kazakhstan-Yili-North Tianshan Block, and subsequently closure of the South Tianhan back-arc basin, producing two suture zones, namely the Central Tianshan and South Tianshan suture zones where ophiolitic melanges and HP metamorphic rocks were emplaced northward. The second stage included the Late Devonian-Carboniferous southward subduction of North Tianshan Ocean beneath the Eo-Tianshan active margin, underlined by the Yili-North Tianshan arc, leading to the collision between the Kazakhstan-Yili-NTS plate and an inferred Junggar Block at Late Carboniferous-Early Permian time. The North Tianshan Suture Zone underlines likely the last oceanic closure of Central Asia Orogenic Belt; all the oceanic domains were consumed before the Middle Permian. The amalgamated units were affected by a Permian major wrenching, dextral in the Tianshan. The correlation with the Kazakh and Kyrgyz Tianshan is clarified. The Kyrgyz South Tianshan is equivalent to the whole part of Chinese Tianshan (CTS and STS) located to the south of Narat Fault and Main Tianshan Shear Zone; the so-called Middle Tianshan thins out toward the east. The South Tianshan Suture of Kyrgyzstan correlates with the Central Tianshan Suture of Chinese Tianshan. The evolution of this southern domain remains similar from east (Gangou area) to west until the Talas-Ferghana Fault, which reflects the convergence history between the Kazakhstan and Tarim blocks.展开更多
The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degre...The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degree, tissue preservation index, vegetation index, transportation index, groundwater influence index, water medium indicator and swamp type index, etc. Among the various controlling factors of swamp microenvironment, swamp water medium elaborates a dominant action to sulfur accumulation in the marine-influenced coals; while coal-forming plant type, hydrodynamic state and water covering depth are more important to sulfur accumulation in the fresh water-influenced coals. Geological fractionation of sulfur isotopes reflects that sulfur accumulation experienced multi-stages evolution. Pyrite sulfurs formed earlier than organic sulfur and the sulfur isotopic δ34Sp shows lower values than organic sulfur isotopic δ34So. In the brine-influenced coals, sulfur accumulation processed relatively a long time span, the distribution of sulfur isotopes dispersed, and the coals are provided with high sulfur contents. In the fresh-water-influenced coals, sulfur accumulation occurred mainly at the syngenetic-penesyngenetic stage and the early diagenetic stage, and the total sulfur is lower and mainly composed of organic sulfur.展开更多
This paper reports petrological and geochemical features and zircon U-Pb age of plagiogranite from the Hongliugou-Lapeiquan ophiolitic melange belt in the northern Altyn Tagh. The zircon U-Pb dating results yield a me...This paper reports petrological and geochemical features and zircon U-Pb age of plagiogranite from the Hongliugou-Lapeiquan ophiolitic melange belt in the northern Altyn Tagh. The zircon U-Pb dating results yield a mean ^238U/^206pb age of 512.1 ± 1.5 Ma, representing an emplacement time of the plagiogranites in the Middle Cambrian. The plagiogranites are interpreted to have derived from anatexis of hydrated amphibolites by ductile shearing during transports of the oceanic crust. Thus it is believed that the formation age of such type of plagiogranite was coeval to or slightly younger than the spreading of the Hongliugou-Lapeiquan limited oceanic basin. The new results from the plagiogranites suggest that an oceanic basin existed in the northern Altyn area during the Middle Cambrian.展开更多
Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carbonif...Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.展开更多
Studies on carbon isotopes of bulk carbonates from Longan and Baping sections of Lower Carboniferous in Guangxi of China show that the stable carbon isotope compositions in carbonate rocks of the isolated platform and...Studies on carbon isotopes of bulk carbonates from Longan and Baping sections of Lower Carboniferous in Guangxi of China show that the stable carbon isotope compositions in carbonate rocks of the isolated platform and deep slope facies were resistant to the influence of early meteoric diagenesis and late burial diagenesis. Three major positive carbon isotope excursions have been recognized in Lower Carboniferous in South China. The first major positive δ3C shift of 4.19‰ occurred in the middle part of Siphonodella isosticha-upper Siphonodella crenulata zone (Tournaisian); the second with an amplitude of 4.65‰ occurred near the Tournaisian/Visean boundary; and the third of 2.23‰ in the lower part of Gnathodus bollandensis zone. The three positive shifts of δ3C can be correlated with global carbon isotope excursions and are consistent with the fall in global sea level, indicating that abundant organic carbon burial, lowering of atmospheric CO2, and glaciation may have occurred during these time intervals.展开更多
A gneissic granite with an U-Pb age of 313±4 Ma was found in northeastern Fujian Province,South China.It is an S-type granite characterized by high K2O,Al2O3 and low SiO2,Na2O contents with high A/CNK ratio of 1....A gneissic granite with an U-Pb age of 313±4 Ma was found in northeastern Fujian Province,South China.It is an S-type granite characterized by high K2O,Al2O3 and low SiO2,Na2O contents with high A/CNK ratio of 1.22 for the whole rock.Zircons with stubby morphology from the gneissic granite yield 206 Pb/238 U ages ranging from 326 to 301 Ma with a weighted average age of 313±4 Ma,and negative εHf(t) values from -8.35 to -1.74 with Hf model ages (TCDM) of 1.43 to 1.84 Ga.This S-type granite probably originated from late Paleoproterozoic crust in intracontinental orogeny.Integrated with previous results on paleogeographic reconstruction of South China,the nature of Paleozoic basins,Early Permian volcanism and U-Pb-Hf isotope of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks,we suggest the occurrence of a late Paleozoic orogeny in the eastern Cathaysia Block,South China.This orogenic cycle includes Late Carboniferous (340-310 Ma) orogeny (compression) episode and Early Permian (287-270 Ma) post-orogenic or intraplate extension episode.Therefore,the late Paleozoic magmatism in the southeastern South China probably occurred during the intraplate orogeny rather than the arc-related process.展开更多
This paper reports the systematic study on petrology, geochemistry, LA ICPMS zircons U-Pb dating, and in situ Hf isotope geology of the four plutons in the central-southern Jiangxi Province, an important part of the S...This paper reports the systematic study on petrology, geochemistry, LA ICPMS zircons U-Pb dating, and in situ Hf isotope geology of the four plutons in the central-southern Jiangxi Province, an important part of the South China Block. In the outcrops, rocks are gradually changed from wall rock (slate or schist) to pluton (gneissic granite); some residual blocks of sandy rock occur in the margin of pluton, and the foliations of residual blocks are parallel to those of both wail rock and gneissic granite. The thin-section observations show that the four plutons contain peraluminous minerals such as muscovite and sillimanite. The flattened and elongated feldspar and quartz grains are often visible in the gneissic granite, parallel to direction of lineation, suggesting that the granitic rock were subjected to a strong ductile sheafing. Geochemically, the A/CNK values from 13 granitic samples are between 1.03 and 1.37 with an average of 1.16, indicating that the granites are of strongly peraluminous plutons. The REE compositions of the 13 samples are similar, showing higher EREE contents, with enrichment in LREEs, depletion in Eu and REE patterns with relative LREE-enrichment and negligible Eu anomalies. They show enrichment in Rb, Th, U and depletion in Ba, Sr, Nb, Ti, belonging to a low Ba-Sr type of granite. Thus, the four bodies should be derived from the same magmatic source. Zircons used as U-Pb dating mostly exhibit euhedral shape and high Th/U values from 0.52 to 1.54 with an average of 1.08, suggesting that most zircons are of magmatic genesis. The zircons from four plutons yielded rather similar 206pb/238U vs. 207Tpb/235U concordia ages: 436.1±5.7 Ma for the Tangwan granite, 440.6±4 Ma for the Jiekou gneissic granite, 435.9±6.2 Ma for the Dongbao gneissic granite, and 441.9±3.1 Ma for the Jinxi K-granite, respectively, corresponding to Silurian Llandovery. Several xenocrysts yielded U-Pb ages around 700 Ma, implying that a breakup event took place during Neoproterozoic in the South China Block. In situ Lu-Hf isotopic analysis shows that all εHf(t) values of zircons are negative and have two-stage Hf model ages (TDM2) from 1.4 to 3.6 Ga, indicating that the Silurian granitic magma came from the re- cycle of Meso-Paleoproterozoic basement and even partly Archean rocks, and had not been effected by mantle magma. Re- searches on regional geology suggest that an intracontinental tectono-magmatic event took place during the early Paleozoic in the study areas, which is characterized by folding and thrusting, leading to crustal shortening and thickening, up to 20 km thickness. The high geothermal temperature from thickening crust and accumulation of producing high-heat radioactive elements gradually softened crustal rocks and caused a partial melting, forming peraluminous granitic magma. Under the post-orogenic extensional and de-pressure condition, these granitic magma rose and was emplaced in the upper crust, leading to development of S-type plutons展开更多
Granulite xenoliths are found in the early Mesozoic diorite intrusions from Chifeng and Ningcheng areas, eastern Inner Mongolia. The granulites are granoblastic and weakly gneissic with mineral assemblage of hypersthe...Granulite xenoliths are found in the early Mesozoic diorite intrusions from Chifeng and Ningcheng areas, eastern Inner Mongolia. The granulites are granoblastic and weakly gneissic with mineral assemblage of hypersthene, diopside, plagioclase and minor biotite, amphibole and ilmenite. Some samples contain the intergrowth composed of labradorite and vermicular hypersthene, and some coarse-grained plagioclases of andesine and labradorite composition occasionally develop bytownite rims with vermicular hypersthene, indicating a possible presence of garnet. Presence of blastogabbroic texture and hypersthene with diopside exsolution lamellae in some samples suggests that the protolith of the granulite is norite or gabbro. On the basis of metamorphic research and thermobaric calculation, the evolution of the granulite xenoliths is summarized into the following stages: (1) Isobaric cooling of underplated noritic or gabbroic magma in the lower crust led to the formation of probable garnet-bearing medium-high pressure granulite. (2) These higher pressure granulites were adiabatically uplifted to upper crust by dioritic magma and transformed to low pressure two-pyroxene granulite during an isothermal decompression. (3) The two-pyroxene granulite underwent retrograde metamorphism of different degrees during an isobaric cooling process as a result of crystallization and cooling of the dioritic magma. The pyroxenite-dominated cumulates and the medium-high pressure granulites may have rejuvenated the lower crust during the early Mesozoic.展开更多
In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule...In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern conti- nental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including co- lumnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, A1, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terri- genous elements such as Fe, Si, REE, and A1 indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the micro- structures formed during this period are stack-like and columnar. The contents of Si and A1 are increased by nearly 10%, indi- cating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16% indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, A1, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, A1, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.展开更多
The Tongbai-Hong'an orogen is located in a key tectonic position linking the Qinling orogen to the west and the Dabie-Sulu orogen to the east. Because the orogen preserves a Paleozoic accretionary orogenic system ...The Tongbai-Hong'an orogen is located in a key tectonic position linking the Qinling orogen to the west and the Dabie-Sulu orogen to the east. Because the orogen preserves a Paleozoic accretionary orogenic system in the north and a latest PaleozoicMesozoic collisional orogenic system in the south, it may serve as an ideal place to study the tectonic evolution between the North and South China Blocks. The available literature data in the past 20 years indicate that the tectonic processes of the Tongbai-Hong'an orogen involved four stages during the Phanerozoic:(1) Early Paleozoic(490–420 Ma) oceanic subduction, arc magmatism and arc-continent collision created a new Andean-type active continental margin on the North China Block;(2) Late Paleozoic(340–310 Ma) oceanic subduction and accretion generated separated paired metamorphic belts: a medium P/T Wuguan-Guishan complex belt in the south of the Shandan-Songpa fault and a high P/T Xiongdian eclogite belt in the northern edge of the Mesozoic HP metamorphic terrane;(3) Latest Paleozoic-Early Mesozoic(255–200 Ma) continental subduction and collision formed the Tongbai HP terrane in the west and the Hong'an HP/UHP terrane in the east as a consequence of deep subduction towards the east and syn-subduction detachment/exhumation of the down-going slab;(4) Late Mesozoic(140–120 Ma) extension, voluminous magma intrusion and tectonic extrusion led to the final exhumation of the Tongbai-Hong'an-Dabie HP/UHP terrane and the wedge-shaped architecture of the terrane narrowing towards the west. However, many open questions still remain about the details of each evolutionary stage and earlier history of the orogen. Besides an extensive study directly on the Tongbai-Hong'an orogen in the future, integrated investigation on the "soft-collisional" Qinling orogen in the west and the "hard-collisional" Dabie-Sulu orogen in the east is required to establish a general tectonic model for the whole Qinling-TongbaiHong'an-Dabie-Sulu orogenic belt.展开更多
The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonia...The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonian corals,conodonts,and other fossil fragments within the limestone blocks were discovered in recent field investigations,indicating that the Dabao Formation was formed during late Paleozoic.Combined with other regional geological data,the Dabao Formation in the Southern Qinling Orogenic Belt is considered to be a late Paleozoic or early Mesozoic accretionary complex.展开更多
Boron isotope values in Paleozoic brachiopods and corals, collected from the Yunnan-Guizhou Plateau, China, can be used to constrain the boron isotope compositions of past oceans. All brachiopod shells and coral sampl...Boron isotope values in Paleozoic brachiopods and corals, collected from the Yunnan-Guizhou Plateau, China, can be used to constrain the boron isotope compositions of past oceans. All brachiopod shells and coral samples were screened for diagenetic recrystallization by cathodoluminescence microscopy, trace element geochemistry of B, Fe, Mn, Sr, and scanning electron microscopy. The boron isotope ratios for brachiopods in Silurian, Devonian, Carboniferous, and Triassic calcites are in the ranges 8.9‰-14.0‰, 8.8‰-13.8‰, 10.3‰-16.3‰, and 6.7‰-12.4‰, respectively. The boron isotope ratios of coral calcites in the Silurian, Devonian, and Permian are 9.1‰-12.2‰, 6.1‰-13.8‰, and 9.2‰-16.1‰, respectively. The δ11B values for both brachiopods and corals are significantly lower than those for modern biogenic carbonates, indicating that the Paleozoic oceans were depleted of δ11B by up to 10‰. Our results are consistent with previous published studies. The boron isotope compositions of corals and brachiopods show the consistent trends. The low δ11B values may be explained by an enhanced riverine flux of boron from the continents.展开更多
文摘Black bedded, nodular, and lenticular chert and silicified parts of stromatolites from the approximately 1 400 - 1 600 million year-old Gaoyuzhuang Formation, North China, contain remark-ably well prep served microflora composed of diverse prokaryotic and possible eukaryotic microbes. Macroscopic algae have also been found. This Formation provides important paleobiological information from which to assess status of Mesoproterozoic life, and to evaluate paleoenvironmental conditions and pre-Phanerozoic biostratigraphy. The Gaoyuzhuang Formation has yielded over 100 taxa described by over 10 investigators. Most of the microbial taxa can be divided into three different assemblages according to their paleobiological and paleoenvironmental characteristics. I. The oscillatoriacean/chroococcacean assemblage which occurs in the first member of the Formation and this is interpreted to represent an assemblage from shallow water mat-building and mat-dwelling taxa with some possible planktonic taxa; 2. the nostocacean assemblage found only in the second member, and includes benthic mat-building or mat-dwelling taxa; and 3. the chroococcacean assemblage of the fourth member, which represents intertidal to supratidal mat-building and allochthonous taxa. Proterozoic microfossils found in chert, especially cyanobacteria, are possibly more valuable as paleoenvironmental indicators than as chronostratigraphic tools because of their morphological conservation, although trends in diversity appear to exist for cyanobacteria in the Proterozoic. The general characteristics of Gaoyuzhuang microfossils, and the fact that most nostocacean chains occur and are. preserved with the chain perpendicular to bedding indicate that: (1) the individual size of Gaoyuzhuang microfossils are part of a general trend of increase with time; (2) Gaoyuzhuang deposits are possibly in a fresh water environment and the rate of sedimentation might be equal to or less than the microbial growth rate; (3) the sedimentary model of Gaoyuzhuang might be from intertidal to subtidal or deep sea, and then to intertidal or supratidal; and (4) the eukaryotic organisms had densely occurred when Gaoyuzhuang Formation deposited.
基金supported by the National Natural Science Foundation of China(No.41506080)the Project of China Geological Survey(Nos.DD20160152,DD20160147,and GZH200800503)+1 种基金the Project of China Ministry of Land and Resources(Nos.XQ-2005-01,and 2009GYXQ10)the Postdoctoral Innovation Fund Project of Shandong Province(No.201602004)
文摘The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential.
基金Supported by Project of China Geological Survey (No. 1212011120153 - 3)
文摘Late Paleozoic strata in northeastern China are distributed in a zonal pattern around the old-land on the Jiamusi-Mongolia Block. They are composed of active deposits in the regular distributed tectonic lithofacies zones. This indicates that the late Paleozoic strata belong to continental margin deposits. According to the strong conformability of the sedimentary strata in the same continental margin and distinct differences among the three continental margins, three stratigraphical regions of the Jiamusi-Mongolia Stratigraphical Province are recognized along the northern, southern and eastern margins of the Jiamusi-Mongolia Block, named respectively as Xing'an Stratigraphical Region, Inner Mongolia grass-Songhua River Stratigraphical Region and Baoqing-Hunchun Stra- tigraphical Region. Due to the characteristics of continental margin deposits and active sediments, the strata can be correlated on the level of formation by the methods of analysing the rock association in the same stratigraphic region. Therefore, some revisions of the lithologieal formations of the late Paleozoic strata in northeastern China have been made, and a new chart of lithostratigraphic correlation has been proposed. Furthermore, the present stratigraphic framework is setting on the International Stratigraphic Chart on the level of stage, after comprehen- sive researches to lithostratigraphy, biostratigraphy and chronostratigraphy, especially the conodont biostratigra- phy and isotopic ages of volcanic rocks obtained in recent years.
文摘Three new species of fossil woods are reported from the Upper,Jurassic to Lower Cretaceous in southeastern Mongolia, including Protaxodioxylon mongolense sp. nov. Circoporoxylon mongolen.;e sp. nov. Protocircoporoylon mongolense sp. nov. The anatomical characters of three new species are described in detail.
文摘According to the characteristics of sedimentary facies and their vertical associations, sequence association of sedimentary facies can be divided into 2 types and 28 subtypes. The first type(type A)is a sedimentary sequence without volcanic rocks, including 18 subtypes. The second type(type B)is a volcanogenic succession including 10 subtypes. Each subtype may reflect certain filling condition under certain sedimentary environment. Time and space distribution of different types of sequence associations can reflect tectonics that controlled the basin evolution, sedimentary environments and palaeogeography.
基金supported by the National Basic Research Program of China(Grant No.2011CB808800)the 111 Project(Grant No.B08030)+1 种基金the National Natural Science Foundation of China(Grant Nos.40621002,40830212&40921062)the Fundamental Research Funds for the Central Universities(CUG130407)
文摘The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geological history. This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem, prompted its transition to Mesozoic ecosystem, and induced coal gap on land as well as reef gap and chert gap in ocean. The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere. The event sequence at the Permian-Triassic boundary (PTB) reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass ex- tinction and the intimate relationship between them. The severe global changes coupling multiple geospheres may have affect- ed the Pangea integration on the Earth's surface spheres, which include: the Pangea integration→enhanced mountain height and basin depth, changes of wind and ocean current systems; enhanced ocean basin depth→the greatest Phanerozoic regression at PTB, disappearance of epeiric seas and subsequent rapid transgression; the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism; two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap (25%251 Ma)→global warming and mass extinction; continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation; enhanced weathering and CH4 emission→negative excursion of δ^13C; mantle plume→crust doming→regression; possible relation between the Illawarra magnetic reversal and the PTB extinction, and so on. Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration. Subduction, delamination, and accumulation of the earth's cool lithospheric material at the "D" layer of CMB started mantle plume by heat compensation and disturbed the outer core ther- too-convection, and the latter in turn would generate the mid-Permian geomagnetic reversal. These core and mantle perturbations may have caused the Pangea integration and two successive LIPs in the Permian, and probably finally the mass extinction at the PTB.
基金supported by National Basic Research Program of China (Grant No. 2007CB411301)the Bureau of China Geological Survey (Grant No. 1212010611806)ISTO
文摘The Chinese Tianshan belt is a major part of the southern Central Asian Orogenic Belt, extending westward to Kyrgyzstan and Kazakhstan. Its Paleozoic tectonic evolution, crucial for understanding the amalgamation of Central Asia, comprises two stages of subduction-collision. The first collisional stage built the Eo-Tianshan Mountains, before a Visean unconformity, in which all structures are verging north. It implied a southward subduction of the Central Tianshan Ocean beneath the Tarim active margin, that induced the Ordovician-Early Devonian Central Tianshan arc, to the south of which the South Tianshan back-arc basin opened. During the Late Devonian, the closure of this ocean led to a collision between Central Tianshan arc and the Kazakhstan-Yili-North Tianshan Block, and subsequently closure of the South Tianhan back-arc basin, producing two suture zones, namely the Central Tianshan and South Tianshan suture zones where ophiolitic melanges and HP metamorphic rocks were emplaced northward. The second stage included the Late Devonian-Carboniferous southward subduction of North Tianshan Ocean beneath the Eo-Tianshan active margin, underlined by the Yili-North Tianshan arc, leading to the collision between the Kazakhstan-Yili-NTS plate and an inferred Junggar Block at Late Carboniferous-Early Permian time. The North Tianshan Suture Zone underlines likely the last oceanic closure of Central Asia Orogenic Belt; all the oceanic domains were consumed before the Middle Permian. The amalgamated units were affected by a Permian major wrenching, dextral in the Tianshan. The correlation with the Kazakh and Kyrgyz Tianshan is clarified. The Kyrgyz South Tianshan is equivalent to the whole part of Chinese Tianshan (CTS and STS) located to the south of Narat Fault and Main Tianshan Shear Zone; the so-called Middle Tianshan thins out toward the east. The South Tianshan Suture of Kyrgyzstan correlates with the Central Tianshan Suture of Chinese Tianshan. The evolution of this southern domain remains similar from east (Gangou area) to west until the Talas-Ferghana Fault, which reflects the convergence history between the Kazakhstan and Tarim blocks.
基金NSFC Key Project (Grant Nos. 49632090 and 49572129).
文摘The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degree, tissue preservation index, vegetation index, transportation index, groundwater influence index, water medium indicator and swamp type index, etc. Among the various controlling factors of swamp microenvironment, swamp water medium elaborates a dominant action to sulfur accumulation in the marine-influenced coals; while coal-forming plant type, hydrodynamic state and water covering depth are more important to sulfur accumulation in the fresh water-influenced coals. Geological fractionation of sulfur isotopes reflects that sulfur accumulation experienced multi-stages evolution. Pyrite sulfurs formed earlier than organic sulfur and the sulfur isotopic δ34Sp shows lower values than organic sulfur isotopic δ34So. In the brine-influenced coals, sulfur accumulation processed relatively a long time span, the distribution of sulfur isotopes dispersed, and the coals are provided with high sulfur contents. In the fresh-water-influenced coals, sulfur accumulation occurred mainly at the syngenetic-penesyngenetic stage and the early diagenetic stage, and the total sulfur is lower and mainly composed of organic sulfur.
基金financially supported by the China Geological Survey (Grant No. 1212010911025)National Natural Science Foundation of China (Grant No. 41002020)
文摘This paper reports petrological and geochemical features and zircon U-Pb age of plagiogranite from the Hongliugou-Lapeiquan ophiolitic melange belt in the northern Altyn Tagh. The zircon U-Pb dating results yield a mean ^238U/^206pb age of 512.1 ± 1.5 Ma, representing an emplacement time of the plagiogranites in the Middle Cambrian. The plagiogranites are interpreted to have derived from anatexis of hydrated amphibolites by ductile shearing during transports of the oceanic crust. Thus it is believed that the formation age of such type of plagiogranite was coeval to or slightly younger than the spreading of the Hongliugou-Lapeiquan limited oceanic basin. The new results from the plagiogranites suggest that an oceanic basin existed in the northern Altyn area during the Middle Cambrian.
基金supported by Project of China Geological Survey(Grant No.1212011120153-3)
文摘Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.
基金supported by MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant No. G0800-06-ZS-319)
文摘Studies on carbon isotopes of bulk carbonates from Longan and Baping sections of Lower Carboniferous in Guangxi of China show that the stable carbon isotope compositions in carbonate rocks of the isolated platform and deep slope facies were resistant to the influence of early meteoric diagenesis and late burial diagenesis. Three major positive carbon isotope excursions have been recognized in Lower Carboniferous in South China. The first major positive δ3C shift of 4.19‰ occurred in the middle part of Siphonodella isosticha-upper Siphonodella crenulata zone (Tournaisian); the second with an amplitude of 4.65‰ occurred near the Tournaisian/Visean boundary; and the third of 2.23‰ in the lower part of Gnathodus bollandensis zone. The three positive shifts of δ3C can be correlated with global carbon isotope excursions and are consistent with the fall in global sea level, indicating that abundant organic carbon burial, lowering of atmospheric CO2, and glaciation may have occurred during these time intervals.
基金supported by the National Basic Research Program of China(2012CB416701)the National Natural Science Foundation of China(40972127)the State Key Laboratory for Mineral Deposits Research(Nanjing University)(ZZKT-201106)
文摘A gneissic granite with an U-Pb age of 313±4 Ma was found in northeastern Fujian Province,South China.It is an S-type granite characterized by high K2O,Al2O3 and low SiO2,Na2O contents with high A/CNK ratio of 1.22 for the whole rock.Zircons with stubby morphology from the gneissic granite yield 206 Pb/238 U ages ranging from 326 to 301 Ma with a weighted average age of 313±4 Ma,and negative εHf(t) values from -8.35 to -1.74 with Hf model ages (TCDM) of 1.43 to 1.84 Ga.This S-type granite probably originated from late Paleoproterozoic crust in intracontinental orogeny.Integrated with previous results on paleogeographic reconstruction of South China,the nature of Paleozoic basins,Early Permian volcanism and U-Pb-Hf isotope of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks,we suggest the occurrence of a late Paleozoic orogeny in the eastern Cathaysia Block,South China.This orogenic cycle includes Late Carboniferous (340-310 Ma) orogeny (compression) episode and Early Permian (287-270 Ma) post-orogenic or intraplate extension episode.Therefore,the late Paleozoic magmatism in the southeastern South China probably occurred during the intraplate orogeny rather than the arc-related process.
基金supported by National Natural Science Foundation of China (Grant Nos. 40634022, 40972132)State Key Laboratory for Mineral Deposits Research of Nanjing University (Grant No. 2008-I-01)
文摘This paper reports the systematic study on petrology, geochemistry, LA ICPMS zircons U-Pb dating, and in situ Hf isotope geology of the four plutons in the central-southern Jiangxi Province, an important part of the South China Block. In the outcrops, rocks are gradually changed from wall rock (slate or schist) to pluton (gneissic granite); some residual blocks of sandy rock occur in the margin of pluton, and the foliations of residual blocks are parallel to those of both wail rock and gneissic granite. The thin-section observations show that the four plutons contain peraluminous minerals such as muscovite and sillimanite. The flattened and elongated feldspar and quartz grains are often visible in the gneissic granite, parallel to direction of lineation, suggesting that the granitic rock were subjected to a strong ductile sheafing. Geochemically, the A/CNK values from 13 granitic samples are between 1.03 and 1.37 with an average of 1.16, indicating that the granites are of strongly peraluminous plutons. The REE compositions of the 13 samples are similar, showing higher EREE contents, with enrichment in LREEs, depletion in Eu and REE patterns with relative LREE-enrichment and negligible Eu anomalies. They show enrichment in Rb, Th, U and depletion in Ba, Sr, Nb, Ti, belonging to a low Ba-Sr type of granite. Thus, the four bodies should be derived from the same magmatic source. Zircons used as U-Pb dating mostly exhibit euhedral shape and high Th/U values from 0.52 to 1.54 with an average of 1.08, suggesting that most zircons are of magmatic genesis. The zircons from four plutons yielded rather similar 206pb/238U vs. 207Tpb/235U concordia ages: 436.1±5.7 Ma for the Tangwan granite, 440.6±4 Ma for the Jiekou gneissic granite, 435.9±6.2 Ma for the Dongbao gneissic granite, and 441.9±3.1 Ma for the Jinxi K-granite, respectively, corresponding to Silurian Llandovery. Several xenocrysts yielded U-Pb ages around 700 Ma, implying that a breakup event took place during Neoproterozoic in the South China Block. In situ Lu-Hf isotopic analysis shows that all εHf(t) values of zircons are negative and have two-stage Hf model ages (TDM2) from 1.4 to 3.6 Ga, indicating that the Silurian granitic magma came from the re- cycle of Meso-Paleoproterozoic basement and even partly Archean rocks, and had not been effected by mantle magma. Re- searches on regional geology suggest that an intracontinental tectono-magmatic event took place during the early Paleozoic in the study areas, which is characterized by folding and thrusting, leading to crustal shortening and thickening, up to 20 km thickness. The high geothermal temperature from thickening crust and accumulation of producing high-heat radioactive elements gradually softened crustal rocks and caused a partial melting, forming peraluminous granitic magma. Under the post-orogenic extensional and de-pressure condition, these granitic magma rose and was emplaced in the upper crust, leading to development of S-type plutons
基金supported by Projects of Ministry of Land and Resources "Deep Probing Technology and Experimental Research" (Grant No. SinoProbe-04-02)National Natural Science Foundation of China (Grant Nos. 90714008, 40972039, 40821002)Key Laboratory of Mineral Resources of Chinese Academy of Sciences
文摘Granulite xenoliths are found in the early Mesozoic diorite intrusions from Chifeng and Ningcheng areas, eastern Inner Mongolia. The granulites are granoblastic and weakly gneissic with mineral assemblage of hypersthene, diopside, plagioclase and minor biotite, amphibole and ilmenite. Some samples contain the intergrowth composed of labradorite and vermicular hypersthene, and some coarse-grained plagioclases of andesine and labradorite composition occasionally develop bytownite rims with vermicular hypersthene, indicating a possible presence of garnet. Presence of blastogabbroic texture and hypersthene with diopside exsolution lamellae in some samples suggests that the protolith of the granulite is norite or gabbro. On the basis of metamorphic research and thermobaric calculation, the evolution of the granulite xenoliths is summarized into the following stages: (1) Isobaric cooling of underplated noritic or gabbroic magma in the lower crust led to the formation of probable garnet-bearing medium-high pressure granulite. (2) These higher pressure granulites were adiabatically uplifted to upper crust by dioritic magma and transformed to low pressure two-pyroxene granulite during an isothermal decompression. (3) The two-pyroxene granulite underwent retrograde metamorphism of different degrees during an isobaric cooling process as a result of crystallization and cooling of the dioritic magma. The pyroxenite-dominated cumulates and the medium-high pressure granulites may have rejuvenated the lower crust during the early Mesozoic.
基金supported by National Natural Science Foundation of China(Grant Nos.40972079,41172015 and 41030853)National Basic Research Program of China(Grant No.2007CB411703)Education Department of Hebei Province(Grant Nos.2009443,2010248)
文摘In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern conti- nental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including co- lumnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, A1, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terri- genous elements such as Fe, Si, REE, and A1 indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the micro- structures formed during this period are stack-like and columnar. The contents of Si and A1 are increased by nearly 10%, indi- cating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16% indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, A1, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, A1, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB856104,2009CB825006)the National Natural Science Foundation of China(Grant Nos.41472064,40672047)the Geological Investigation Project of China Geological Survey(Grant No.1212010711812)
文摘The Tongbai-Hong'an orogen is located in a key tectonic position linking the Qinling orogen to the west and the Dabie-Sulu orogen to the east. Because the orogen preserves a Paleozoic accretionary orogenic system in the north and a latest PaleozoicMesozoic collisional orogenic system in the south, it may serve as an ideal place to study the tectonic evolution between the North and South China Blocks. The available literature data in the past 20 years indicate that the tectonic processes of the Tongbai-Hong'an orogen involved four stages during the Phanerozoic:(1) Early Paleozoic(490–420 Ma) oceanic subduction, arc magmatism and arc-continent collision created a new Andean-type active continental margin on the North China Block;(2) Late Paleozoic(340–310 Ma) oceanic subduction and accretion generated separated paired metamorphic belts: a medium P/T Wuguan-Guishan complex belt in the south of the Shandan-Songpa fault and a high P/T Xiongdian eclogite belt in the northern edge of the Mesozoic HP metamorphic terrane;(3) Latest Paleozoic-Early Mesozoic(255–200 Ma) continental subduction and collision formed the Tongbai HP terrane in the west and the Hong'an HP/UHP terrane in the east as a consequence of deep subduction towards the east and syn-subduction detachment/exhumation of the down-going slab;(4) Late Mesozoic(140–120 Ma) extension, voluminous magma intrusion and tectonic extrusion led to the final exhumation of the Tongbai-Hong'an-Dabie HP/UHP terrane and the wedge-shaped architecture of the terrane narrowing towards the west. However, many open questions still remain about the details of each evolutionary stage and earlier history of the orogen. Besides an extensive study directly on the Tongbai-Hong'an orogen in the future, integrated investigation on the "soft-collisional" Qinling orogen in the west and the "hard-collisional" Dabie-Sulu orogen in the east is required to establish a general tectonic model for the whole Qinling-TongbaiHong'an-Dabie-Sulu orogenic belt.
基金supported by National Natural Science Foundation of China (Grant Nos. 40602026, 40772137)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of China (Grant No. J0720)+1 种基金Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAB01A11)the Geological Survey Project of China (Grant No. 1212010611807)
文摘The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonian corals,conodonts,and other fossil fragments within the limestone blocks were discovered in recent field investigations,indicating that the Dabao Formation was formed during late Paleozoic.Combined with other regional geological data,the Dabao Formation in the Southern Qinling Orogenic Belt is considered to be a late Paleozoic or early Mesozoic accretionary complex.
基金supported by National Natural Science Foundation of China (Grant Nos. 407760071 and 40976074)
文摘Boron isotope values in Paleozoic brachiopods and corals, collected from the Yunnan-Guizhou Plateau, China, can be used to constrain the boron isotope compositions of past oceans. All brachiopod shells and coral samples were screened for diagenetic recrystallization by cathodoluminescence microscopy, trace element geochemistry of B, Fe, Mn, Sr, and scanning electron microscopy. The boron isotope ratios for brachiopods in Silurian, Devonian, Carboniferous, and Triassic calcites are in the ranges 8.9‰-14.0‰, 8.8‰-13.8‰, 10.3‰-16.3‰, and 6.7‰-12.4‰, respectively. The boron isotope ratios of coral calcites in the Silurian, Devonian, and Permian are 9.1‰-12.2‰, 6.1‰-13.8‰, and 9.2‰-16.1‰, respectively. The δ11B values for both brachiopods and corals are significantly lower than those for modern biogenic carbonates, indicating that the Paleozoic oceans were depleted of δ11B by up to 10‰. Our results are consistent with previous published studies. The boron isotope compositions of corals and brachiopods show the consistent trends. The low δ11B values may be explained by an enhanced riverine flux of boron from the continents.